J Appl Biomed 15:81-86, 2017 | DOI: 10.1016/j.jab.2016.10.001

Hypoglycemic effect of Chrysanthemum morifolium extract on alloxan-induced diabetic mice is associated with peroxisome proliferator-activated receptor α/γ-mediated hepatic glycogen synthesis

Xiang Shanga, Zeng-Yan Zhua,b, Feng Wanga, Jin-Cheng Liua, Jiang-Yun Liua, Mei-Lin Xiea,*
a Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
b Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou 215003, Jiangsu Province, China

Previous studies have indicated that polyphenol-rich Chrysanthemum morifolium extract (CME) may inhibit the formation of hyperlipidemic fatty liver in mice. But there has been no report about therapeutic effect on diabetes mellitus. In the present study, we investigated the action of CME and its potential mechanisms. A mouse model with diabetes mellitus was induced by alloxan. The results showed that after treatment of diabetic mice with polyphenol-rich CME 150 and 300 mg/kg for 6 weeks, the levels of fasting blood glucose (FBG) as well as water and food consumption were decreased (P < 0.05 or P < 0.01), the content of hepatic glycogen was increased, especially in the 300 mg/kg group (P < 0.05), but no significant variations in the body-weight gain, fasting serum insulin, and muscular glycogen were observed. Importantly, toxic alloxan treatment might decrease the protein expressions of hepatic peroxisome proliferator-activated receptor (PPAR) α/γ, glycogen synthase (GS), and glucose transporter-2 (Glut-2) (P < 0.05 or P < 0.01), while CME might reverse the changes (P < 0.01). These findings demonstrate that the reduction of PPARα/γ-mediated hepatic glycogen synthesis may involve in the alloxan-induced hyperglycemia, and the hypoglycemic mechanisms of CME may be mainly associated with the increment of hepatic glycogen synthesis via upregulation of PPARα/γ-mediated GS and Glut-2 protein expressions.

Keywords: Blood glucose; Chrysanthemum morifolium extract; Hepatic glycogen; Glucose transporter-2; Glycogen synthase; Peroxisome proliferator-activated receptor α, γ

Received: February 2, 2016; Accepted: October 6, 2016; Published: January 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Shang X, Zhu Z, Wang F, Liu J, Liu J, Xie M. Hypoglycemic effect of Chrysanthemum morifolium extract on alloxan-induced diabetic mice is associated with peroxisome proliferator-activated receptor α/γ-mediated hepatic glycogen synthesis. J Appl Biomed. 2017;15(1):81-86. doi: 10.1016/j.jab.2016.10.001.
Download citation

References

  1. Barroso, I., Gurnell, M., Crowley, V.E.F., Agostini, M., Schwabe, J.W., Soos, M.A., Maslen, G.L., Williams, T.D.M., Lewis, H., Schafer, A.J., Chatterjee, V.K.K., O'Rahilly, S., 1999. Dominant negative mutations in human PPAR gamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880-883. Go to original source... Go to PubMed...
  2. Bezborodkina, N.N., Chestnova, A.Y., Okovity, S.V., Kudryavtsev, B.N., 2014. Activity of glycogen synthase and glycogen phosphorylase in normal and cirrhotic rat liver during glycogen synthesis from glucose or fructose. Exp. Toxicol. Pathol. 66, 147-154. Go to original source... Go to PubMed...
  3. Cui, Y., Wang, X.L., Xue, J., Liu, J.Y., Xie, M.L., 2014. Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through PPARa-mediated mechanism in mice. Nutr. Res. 34, 268-275. Go to original source... Go to PubMed...
  4. Desvergne, B., Wahli, W., 1999. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688. Go to original source... Go to PubMed...
  5. Flavell, D.M., Ireland, H., Stephens, J.W., Hawe, E., Acharya, J., Mather, H., Hurel, S.J., Humphries, S.E., 2005. Peroxisome proliferator-activated receptor alpha gene variation influences ages of onset and progression of type 2 diabetes. Diabetes 54, 582-586. Go to original source... Go to PubMed...
  6. Im, S.S., Kim, J.W., Kim, T.H., Song, X.L., Kim, S.Y., Kim, H.I., Ahn, Y.H., 2005. Identification and characterization of peroxisome proliferator response element in the mouse GLUT2 promoter. Exp. Mol. Med. 37, 101-110. Go to original source... Go to PubMed...
  7. Jay, M.A., Ren, J., 2007. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr. Diabetes Rev. 3, 33-39. Go to original source... Go to PubMed...
  8. Jia, L.Y., Sun, Q.S., Huang, S.W., 2004. Comparison of various constituents in eight kinds of chrysanthemum. Chin. Tradit. Herb. Drugs 35, 1180-1183.
  9. Jiang, H.D., Cai, J., Xu, J.H., Zhou, X.M., Xia, Q., 2005. Endothelium-dependent and direct relaxation induced by ethyl acetate extract from Flos Chrysanthemi in rat thoracic aorta. J. Ethnopharmacol. 101, 221-226. Go to original source... Go to PubMed...
  10. Joussen, A.M., Doehmen, S., Le, M.L., Koizumi, K., Radetzky, S., Krohne, T.U., Poulaki, V., Semkova, I., Kociok, N., 2009. TNF-a mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol. Vis. 15, 1418-1428. Go to PubMed...
  11. Karthikesan, K., Pari, L., Menon, V.P., 2010. Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin-nicotinamide generated oxidative stress induced diabetes. J. Funct. Foods 2, 134-142. Go to original source...
  12. Kersten, S., 2014. Integrated physiology and systems biology of PPARalpha. Mol. Metab. 3, 354-371. Go to original source... Go to PubMed...
  13. Kim, H.J., Lee, Y.S., 2005. Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities. Planta Med. 71, 871-876. Go to original source... Go to PubMed...
  14. Kwon, E.Y., Jung, U.J., Park, T., Yun, J.W., Choi, M.S., 2015. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes 64, 1658-1669. Go to original source... Go to PubMed...
  15. Lee, J.S., Kim, H.J., Lee, Y.S., 2003. A new anti-HIV flavonoid from glucoronide from Chrysanthemum morifolium. Planta Med. 69, 859-861. Go to original source... Go to PubMed...
  16. Lee, D.Y., Choi, G., Yoon, T., Cheon, M.S., Choo, B.K., Kim, H.K., 2009. Antiinflammatory activity of Chrysanthemum indicum extract in acute and chronic cutaneous inflammation. J. Ethnopharmacol. 123, 149-154. Go to original source... Go to PubMed...
  17. Lenzen, S., 2008. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia 51, 216-226. Go to original source... Go to PubMed...
  18. Lii, C.K., Lei, Y.P., Yao, H.T., Hsieh, Y.S., Tsai, C.W., Liu, K.L., Chen, H.W., 2010. Chrysanthemum morifolium Ramat: reduces the oxidized LDL-induced expression of intercellular adhesion molecule-1 and E-selectin in human umbilical vein endothelial cells. J. Ethnopharmacol. 128, 213-220. Go to original source... Go to PubMed...
  19. Lin, L.Z., Harnly, J.M., 2010. Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem. 120, 319-326. Go to original source...
  20. Miyazawa, M., Hisama, M., 2003. Anti-mutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci. Biotechnol. Biochem. 67, 2091-2099. Go to original source... Go to PubMed...
  21. Moore, D.J., Gregory, J.M., Kumah-Crystal, Y.A., Simmons, J.H., 2009. Mitigating micro-and macro-vascular complications of diabetes beginning in adolescence. Vasc. Health Risk Manage. 5, 1015-1031. Go to original source... Go to PubMed...
  22. Mordes, J.P., Rossini, A.A., 1981. Animal models of diabetes. Am. J. Med. 70, 353-360. Go to original source... Go to PubMed...
  23. Mueckler, M., Thorens, B., 2013. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 34 (SI), 121-138. Go to original source... Go to PubMed...
  24. Ortmeyer, H.K., Adall, Y., Marciani, K.R., Katsiaras, A., Ryan, A.S., Bodkin, N.L., Hansen, B.C., 2005. Skeletal muscle glycogen synthase subcellular localization: effects of insulin and PPAR-alpha agonist (K-111) administration in rhesus monkeys. Am. J. Physiol.-Reg. I 288, R1509-R1517. Go to original source... Go to PubMed...
  25. Ren, B., Qin, W.W., Wu, F.H., Wang, S.S., Pan, C., Wang, L.Y., Zeng, B., Ma, S.P., Liang, J. Y., 2016. Apigenin and naringenin regulate glucose and lipid metabolism: and ameliorate vascular dysfunction in type 2 diabetic rats. Eur. J. Pharmacol. 773, 13-23. Go to original source... Go to PubMed...
  26. Roach, P.J., Depaoli-Roach, A.A., Hurley, T.D., Tagliabracci, V.S., 2012. Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441, 763- 787. Go to original source... Go to PubMed...
  27. Rusu, M.A., Tamas, M., Puica, C., Roman, I., Sabadas, M., 2005. The hepatoprotective action of ten herbal extracts in CCl4 intoxicated liver. Phytother. Res. 19, 744- 749. Go to original source... Go to PubMed...
  28. Shen, Z., Zhang, W.T., Huang, Q.W., Chen, L.Y., Zhao, W.L., 2010. RP-HPLC determination of 3,5-di-caffeoylquinic acid, luteolin-7-b-glucoside and chlorogenic acid in chrysanthemum. Chin. Tradit. Herb. Drugs 41, 307-310.
  29. Ukiya, M., Akihisa, T., Yasukawa, K., Kasahara, Y., Kimura, Y., Koike, K., Nikaido, T., Takido, M., 2001. Constituents of compositae plants. 2. Triterpene diols, triols, and their 3-O-fatty acid esters from edible chrysanthemum flower extract and their anti-inflammatory effects. J. Agric. Food Chem. 49, 3187-3197. Go to original source... Go to PubMed...
  30. Wang, Z., Clifford, M.N., Sharp, P., 2008. Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation in vitro, of effects on glucose absorption in cultured Caco-2 cells. Food Chem. 108, 369-373. Go to original source...
  31. Wang, Z.D., Huang, C., Li, Z.F., Yang, J., Li, B.H., Liang, R.R., Dai, Z.J., Liu, Z.W., 2010. Chrysanthemum indicum ethanolic extract inhibits invasion of hepatocellular carcinoma via regulation of MMP/TIMP balance as therapeutic target. Oncol. Rep. 23, 413-421. Go to original source...
  32. Xie, Y.Y., Qu, J.L., Wang, Q.L., Wang, Y., Yoshikawa, M., Yuan, D., 2012. Comparative evaluation of cultivars of Chrysanthemum morifolium flowers by HPLC-DADESI/MS analysis and antiallergic assay. J. Agric. Food Chem. 60, 12574-12583. Go to original source... Go to PubMed...
  33. Yang, L., Wei, D.D., Chen, Z., Wang, J.S., Kong, L.Y., 2011. Reversal of multidrug resistance in human breast cancer cells by Curcuma wenyujin and Chrysanthemum indicum. Phytomedicine 18, 710-718. Go to original source... Go to PubMed...
  34. Yoshikawa, M., Morikawa, T., Toguchida, I., Harima, S., Matsuda, H., 2000. Medicinal flowers. II. Inhibitors of nitric oxide production and absolute stereostructures of five new germacrane-type sesquiterpenes kikkanols D, D, monoacetate, E, F, and F monoacetate from the flowers of Chrysanthemum indicum L. Chem. Pharm. Bull. 48, 651-656. Go to original source... Go to PubMed...