Comptes Rendus
Prix Alexandre-Joannidès 2015 de l'Académie des sciences
Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics
[Résonance magnétique nucléaire en champs magnétiques intenses : application à la physique de la matière condensée]
Comptes Rendus. Physique, Volume 18 (2017) no. 5-6, pp. 331-348.

Dans cette revue, nous décrivons les opportunités offertes par la résonance magnétique nucléaire (RMN) pour étudier les propriétés microscopiques des nouveaux états quantiques de la matière induits par les champs magnétiques intenses. Nous mettons l'accent sur les expériences réalisées dans des bobines résistives (jusqu'à 34 T) ou hybrides (jusqu'à 45 T), qui ouvrent un large accès à ce type de transitions quantiques. Après avoir introduit les quantités observables par RMN, nous considérons plusieurs domaines de recherche : les systèmes de spins quantiques (la transition de spin–Peierls, les échelles de spin, les phases nématiques de spin, les plateaux d'aimantation et la condensation de Bose–Einstein des excitations triplets), l'onde de densité de charge induite sous champ dans les supraconducteurs à haute Tc, et la supraconductivité exotique, avec la phase supraconductrice Fulde–Ferrel–Larkin–Ovchinnikov et la supraconductivité induite sous champ de type Jaccarino–Peter.

In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin–Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose–Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde–Ferrel–Larkin–Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino–Peter mechanism.

Publié le :
DOI : 10.1016/j.crhy.2017.09.009
Keywords: NMR, High magnetic fields, Quantum spin systems, High-$ {T}_{\mathrm{c}}$ superconductors, Charge density waves, Exotic superconductivity
Mot clés : RMN, Camps magnétiques intenses, Systèmes de spins quantiques, Supraconducteurs à haute $ {T}_{\mathrm{c}}$, Ondes de densité de charge, Supraconductivité exotique
Claude Berthier 1 ; Mladen Horvatić 1 ; Marc-Henri Julien 1 ; Hadrien Mayaffre 1 ; Steffen Krämer 1

1 Laboratoire national des champs magnétiques intenses, CNRS (UPR 3228), EMFL, UGA, UPS, INSA, 38042 Grenoble, France
@article{CRPHYS_2017__18_5-6_331_0,
     author = {Claude Berthier and Mladen Horvati\'c and Marc-Henri Julien and Hadrien Mayaffre and Steffen Kr\"amer},
     title = {Nuclear magnetic resonance in high magnetic field: {Application} to condensed matter physics},
     journal = {Comptes Rendus. Physique},
     pages = {331--348},
     publisher = {Elsevier},
     volume = {18},
     number = {5-6},
     year = {2017},
     doi = {10.1016/j.crhy.2017.09.009},
     language = {en},
}
TY  - JOUR
AU  - Claude Berthier
AU  - Mladen Horvatić
AU  - Marc-Henri Julien
AU  - Hadrien Mayaffre
AU  - Steffen Krämer
TI  - Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 331
EP  - 348
VL  - 18
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.09.009
LA  - en
ID  - CRPHYS_2017__18_5-6_331_0
ER  - 
%0 Journal Article
%A Claude Berthier
%A Mladen Horvatić
%A Marc-Henri Julien
%A Hadrien Mayaffre
%A Steffen Krämer
%T Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics
%J Comptes Rendus. Physique
%D 2017
%P 331-348
%V 18
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2017.09.009
%G en
%F CRPHYS_2017__18_5-6_331_0
Claude Berthier; Mladen Horvatić; Marc-Henri Julien; Hadrien Mayaffre; Steffen Krämer. Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics. Comptes Rendus. Physique, Volume 18 (2017) no. 5-6, pp. 331-348. doi : 10.1016/j.crhy.2017.09.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.009/

[1] High Magnetic Fields. Applications to Condensed Matter Physics and Spectroscopy (C. Berthier; L.P. Lévy; G. Martinez, eds.), Lecture Notes in Physics, vol. 595, Springer, Berlin, Heidelberg, New York, 2002

[2] P.G. De Gennes Superconductivity of Metals and Alloys, W.A. Benjamin, New York, 1966

[3] K. von Klitzing; G. Dorda; M. Pepper Phys. Rev. Lett., 45 (1980), p. 494

[4] D. Tsui; H. Stormer; A. Gossard Phys. Rev. Lett., 50 (1982), p. 1599

[5] J. Jain Phys. Rev. Lett., 63 (1989), p. 199

[6] D.C. Glattli; R. Shankar High Magnetic Fields. Applications to Condensed Matter Physics and Spectroscopy (C. Berthier; L.P. Lévy; G. Martinez; C. Berthier; L.P. Lévy; G. Martinez, eds.), Lecture Notes in Physics, High Magnetic Fields. Applications to Condensed Matter Physics and Spectroscopy, Lecture Notes in Physics, vol. 595, Springer, Berlin, Heidelberg, New York, 2002, p. 1 (For a review, see)

[7] S. Gerber et al. Science, 350 (2015), p. 6263

[8] https://www.helmholtz-berlin.de/quellen/ber/hfm/index_en.html (For recent information, see)

[9] Y. Fagot-Revurat et al. Phys. Rev. Lett., 77 (1996), p. 1816

[10] Y. Fagot-Revurat et al. Phys. Rev. B, 55 (1997), p. 2964

[11] G. Chaboussant et al. Phys. Rev. Lett., 97 (1997), p. 925

[12] G. Chaboussant et al. Eur. Phys. J. B, 6 (1998), p. 167

[13] M. Horvatić et al. Phys. Rev. Lett., 83 (1999), p. 420

[14] M.-H. Julien et al. Phys. Rev. Lett., 84 (2000), p. 3422

[15] K. Kodama et al. Science, 298 (2002), p. 395

[16] M. Horvatić; C. Berthier High Magnetic Fields. Applications to Condensed Matter Physics and Spectroscopy (C. Berthier; L.P. Lévy; G. Martinez, eds.), Lecture Notes in Physics, vol. 595, Springer, Berlin, Heidelberg, New York, 2002, p. 191

[17] M. Takigawa et al. Phys. B Amsterdam, 346 (2004), p. 27

[18] S. Krämer et al. Phys. Rev. B, 76 (2007), p. 100406(R)

[19] K. Hiraki et al. J. Phys. Soc. Jpn., 76 (2007)

[20] M. Klanjšek et al. Phys. Rev. Lett., 101 (2008)

[21] F. Levy et al. Europhys. Lett., 81 (2008)

[22] G. Koutroulakis et al. Phys. Rev. Lett., 104 (2010)

[23] T. Wu et al. Nature, 477 (2011), p. 191

[24] S. Mukhopadhyay et al. Phys. Rev. Lett., 109 (2012)

[25] T. Wu et al. Phys. Rev. B, 88 (2013)

[26] T. Wu et al. Nat. Commun., 4 (2013), p. 2113

[27] M. Takigawa et al. Phys. Rev. Lett., 110 (2013)

[28] S. Krämer et al. Phys. Rev. B, 87 (2013), p. 180405(R)

[29] M. Jeong et al. Phys. Rev. Lett., 111 (2013)

[30] H. Mayaffre et al. Nat. Phys., 10 (2014), p. 928

[31] M. Klanjšek et al. Phys. Rev., 92 (2015), p. 060408(R)

[32] T. Wu et al. Nat. Commun., 6 (2015), p. 6438

[33] M.-H. Julien Science, 350 (2015), p. 914

[34] T. Iye et al. J. Phys. Soc. Jpn., 84 (2015)

[35] M. Jeong et al. Phys. Rev. Lett., 117 (2016)

[36] R. Blinder et al. Phys. Rev. B, 95 (2017), p. 020404(R)

[37] A. Orlova et al. Phys. Rev. Lett., 118 (2017)

[38] R. Zhou et al. Phys. Rev. Lett., 118 (2017)

[39] R. Zhou, et al., unpublished.

[40] C.P. Slichter Principles of Magnetic Resonance, Springer, Berlin, 1990

[41] A. Abragam Principles of Nuclear Magnetism, Oxford University Press, New York, 1961

[42] M. Mehring; V.A. Weberruß Object-Oriented Magnetic Resonance: Classes and Objects, Calculations and Computations, Academic Press, San Diego, 2001

[43] E. Fukushima; S.B.W. Roeder Experimental Pulse NMR. A Nuts and Bolts Approach, Addison–Wesley, London, Amsterdam, 1981

[44] A. Narath Hyperfine Interaction (A. Freeman; R.B. Frankel, eds.), Academic Press, New York London, 1967, p. 287

[45] C. Berthier; D. Jérome; P. Molinié J. Phys. C, Solid State Phys., 11 (1978), p. 797

[46] T.D.W. Claridge High Resolution NMR Techniques in Organic Chemistry, Elsevier, Amsterdam, 2016

[47] A. Abragam; B. Bleaney Electronic Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, 1970

[48] J. Winter Magnetic Resonance in Metals, Clarendon, Oxford, 1971

[49] P. Mendels et al. Phys. Rev. Lett., 85 (2000), p. 3496

[50] V.P. Mineev; K.V. Samokhin Introduction to Unconventional Superconductivity, Gordon and Breach Science Publishers, 1999

[51] P. Butaud; et al.; P. Butaud et al. J. Phys. France, 55 (1985), p. 253

[52] K. Hiraki; K. Kanoda Phys. Rev. Lett., 80 (1998), p. 437

[53] L.C. Hebel; C.P. Slichter Phys. Rev., 107 (1957), p. 901

[54] H. Mayaffre et al. Phys. Rev. Lett., 75 (1995), p. 4122

[55] A. Auerbach Interacting Electrons and Quantum Magnetism, Graduate Text in Contemporary Physics, Springer-Verlag, New York, 1994

[56] Quantum Magnetism (U. Schollwöck; U.J. Richter; D.J.J. Farnell; R.F. Bishop, eds.), Lect. Notes Phys., vol. 645, Springer, Berlin, Heidelberg, 2004

[57] T. Giamarchi Quantum Physics in One Dimension, Clarendon Press, Oxford, UK, 2004

[58] S. Sachdev Quantum Phase Transition, Cambridge University Press, Cambridge, UK, 1998

[59] Introduction to Frustration Magnetism (C. Lacroix; P. Mendels; F. Mila, eds.), Springer Series on Solid State Science, Springer, Berlin, Heidelberg, 2011

[60] P. Jordan; E. Wigner Z. Phys., 47 (1928), p. 631

[61] P.W. Anderson Science, 235 (1987), p. 1196

[62] C. Broholm et al. Magnetized states of quantum spin chains (C. Berthier; L.P. Lévy; G. Martinez, eds.), High Magnetic Fields. Applications to Condensed Matter Physics and Spectroscopy, Lecture Notes in Physics, vol. 595, Springer, Berlin, Heidelberg, New York, 2002, pp. 211-234

[63] M. Motokawa; H. Ohta; H. Nojiri; S. Kimura J. Phys. Soc. Jpn., 72 (2003) no. Suppl. B, pp. 1-11

[64] M. Takigawa; F. Mila Introduction to Frustration Magnetism (C. Lacroix; P. Mendels; F. Mila, eds.), Springer Series on Solid State Science, Springer, Berlin, Heidelberg, 2011 (and references therein)

[65] T. Giamarchi; C. Rüegg; O. Tchernyshyov Nat. Phys., 4 (2008), p. 198

[66] V. Zapf; M. Jaime; C.D. Batista Rev. Mod. Phys., 86 (2014), p. 563

[67] T. Giamarchi; A.M. Tsvelik Phys. Rev. B, 59 (1999)

[68] I.E. Dzyaloshinskii J. Phys. Chem. Solids, 4 (1958), p. 241

[69] T. Moriya Phys. Rev. Lett., 4 (1960), p. 228

[70] L. Balents Nature, 464 (2010), p. 199

[71] T. Nikuni et al. Phys. Rev. Lett., 84 (2000), p. 5868

[72] T.M. Rice Science, 298 (2002), p. 760

[73] F.D.M. Haldane Phys. Rev. Lett., 45 (1980), p. 1358

[74] S. Kimura et al. Phys. Rev. Lett., 100 (2008)

[75] S. Kimura et al. Phys. Rev. Lett., 99 (2007)

[76] S. Kimura et al. Phys. Rev. Lett., 101 (2008)

[77] E. Canévet et al. Phys. Rev. Lett., 87 (2013)

[78] B. Grenier et al. Phys. Rev. B, 92 (2015)

[79] W. Bray et al. The spin–Peierls transition (J.C. Miller, ed.), Extended Linear Compounds, Plenum, New York, 1982, p. 353

[80] M. Hase et al. Phys. Rev. Lett., 70 (1993), p. 3651

[81] G. Uhrig et al. Phys. Rev. B, 60 (1999), p. 9468

[82] H.M. Rønnow et al. Phys. Rev. Lett., 84 (2000), p. 446

[83] K. Kiryhukin et al. Phys. Rev. Lett., 76 (1996), p. 4608

[84] Z. Hiroi et al. J. Solid State Chem., 95 (1991), p. 230

[85] E. Dagotto Rep. Prog. Phys., 62 (1999), p. 1571

[86] F. Mila Eur. Phys. J. B, 6 (1998), p. 201

[87] T.M. Rice High Magnetic Fields. Applications to Condensed Matter Physics and Spectroscopy (C. Berthier; L.P. Lévy; G. Martinez, eds.), Lecture Notes in Physics, vol. 595, Springer, Berlin, Heidelberg, New York, 2002, pp. 139-160

[88] F.D.M. Haldane Phys. Rev. Lett., 93 (1983), p. 464

[89] M.B. Stone et al. Phys. Rev. B, 65 (2002)

[90] B.R. Patyal et al. Phys. Rev. B, 41 (1990), p. 1657

[91] B.C. Watson et al. Phys. Rev. Lett., 86 (2001), p. 5168

[92] C. Rüegg et al. Phys. Rev. Lett., 101 (2008)

[93] B. Thielemann et al. Phys. Rev. B, 79 (2009), p. 020408(R)

[94] P. Bouillot et al. Phys. Rev. B, 83 (2011)

[95] A. Shapiro et al. J. Am. Chem. Soc., 129 (2007), p. 952

[96] T. Hong et al. Phys. Rev. Lett., 105 (2010)

[97] D. Schmidiger et al. Phys. Rev. Lett., 108 (2012)

[98] M. Enderle et al. Europhys. Lett., 70 (2005), p. 237

[99] T. Hikihara et al. Phys. Rev. B, 78 (2008)

[100] J. Sudan; A. Lüscher; A.M. Läuchli Phys. Rev. B, 80 (2009)

[101] M.E. Zhitomirsky; H. Tsunetsugu Europhys. Lett., 92 (2010)

[102] L.E. Svistov et al. JETP Lett., 93 (2011), p. 21

[103] N. Büttgen et al. Phys. Rev. B, 85 (2012)

[104] K. Nawa et al. J. Phys. Soc. Jpn., 82 (2013)

[105] N. Büttgen et al. Phys. Rev. B, 90 (2014)

[106] F. Mila Physics, 10 (2017), p. 64

[107] A. Smerald; N. Shannon Phys. Rev. B, 93 (2016)

[108] B.S. Shastry; B. Sutherland Physica (Amsterdam), 108B+C (1981), p. 1069

[109] H. Kageyama et al. Phys. Rev. Lett., 82 (1999), p. 3168

[110] A. Koga; N. Kawakami Phys. Rev. Lett., 84 (2000), p. 4461

[111] P. Corboz; F. Mila Phys. Rev. B, 87 (2013)

[112] K. Onizuka et al. J. Phys. Soc. Jpn., 69 (2000), p. 1016

[113] S.E. Sebastian et al. Proc. Natl. Acad. Sci. USA, 105 (2008)

[114] J. Dorier; K.P. Schmidt; F. Mila Phys. Rev. Lett., 101 (2008)

[115] A. Abendschein; S. Capponi Phys. Rev. Lett., 101 (2008)

[116] M. Jaime et al. Proc. Natl. Acad. Sci. USA, 109 (2012)

[117] Y.H. Matsuda et al. Phys. Rev. Lett., 111 (2013)

[118] M. Nemec; G.R. Foltin; K.P. Schmidt Phys. Rev. B, 86 (2012)

[119] F. Mila; M. Takigawa Eur. Phys. J. B, 86 (2013), p. 354

[120] P. Corboz; F. Mila Phys. Rev. Lett., 112 (2014)

[121] M.E. Zayed et al. Nat. Phys., 13 (2017), p. 962

[122] D.A. Schneider et al. Phys. Rev. B, 93 (2016), p. 241107(R)

[123] T. Matsubara; H.A. Matsuda Prog. Theor. Phys., 16 (1956), p. 569

[124] O. Vyaselev et al. Phys. Rev. Lett., 92 (2004)

[125] V.S. Zapf et al. Phys. Rev. Lett., 96 (2006)

[126] L. Yin et al. Phys. Rev. Lett., 101 (2008)

[127] M. Jaime et al. Phys. Rev. Lett., 93 (2004)

[128] S.E. Sebastian et al. Nature, 441 (2006), p. 617

[129] E.C. Samulon et al. Phys. Rev. B, 73 (2006), p. 100407(R)

[130] C. Rüegg et al. Phys. Rev. Lett., 98 (2007)

[131] O. Rösch; M. Vojta; O. Rösch; M. Vojta Phys. Rev. B, 76 (2007), p. 180401(R)

[132] N. Laflorencie; F. Mila Phys. Rev. Lett., 102 (2009)

[133] V.V. Mazurenko et al. Phys. Rev. Lett., 112 (2014)

[134] G. Bednorz; K.A. Müller Z. Phys. B, 64 (1986), p. 189

[135] B. Keimer et al. Nature, 518 (2015), p. 179 (and references therein)

[136] H. Alloul; T. Ohno; P. Mendels Phys. Rev. Lett., 63 (1989), p. 1700

[137] N. Doiron-Leyraud et al. Nature, 447 (2008), p. 565

[138] B. Vignolle et al. C. R. Phys., 14 (2013), p. 39

[139] D. LeBoeuf et al. Nature, 450 (2007), p. 533

[140] S.E. Sebastian; C. Proust Annu. Rev. Condens. Matter Phys., 6 (2015), p. 411

[141] M. Tranquada et al. Nature, 375 (1995), p. 561

[142] R. Comin; A. Damascelli Annu. Rev. Condens. Matter Phys., 7 (2016), p. 369

[143] G. Grissonnanche et al. Nat. Commun., 5 (2014), p. 3280

[144] G. Ghiringhelli et al. Science, 337 (2012), p. 821

[145] J. Chang et al. Nat. Phys., 8 (2012), p. 871

[146] S. Blanco-Canosa et al. Phys. Rev. B, 90 (2014)

[147] R. Comin et al. Science, 343 (2014), p. 390

[148] E.H. da Silva Neto et al. Science, 343 (2014), p. 393

[149] W. Tabis et al. Nat. Commun., 5 (2014), p. 5875

[150] K. Ghoshray et al. J. Phys. Condens. Matter, 21 (2009)

[151] J. Arguello et al. Phys. Rev. B, 89 (2014)

[152] U. Chatterjee et al. Nat. Phys., 6 (2010), p. 99

[153] M. Le Tacon et al. Nat. Phys., 10 (2014), p. 52

[154] D. LeBoeuf et al. Nat. Phys., 9 (2013), p. 79

[155] J. Chang et al. Nat. Commun., 7 (2016)

[156] H. Jang et al. Proc. Natl. Acad. Sci. USA, 113 (2016)

[157] R. Blinc Phys. Rep., 79C (1981), p. 331

[158] P. Butaud et al. Phys. Rev. Lett., 55 (1995), p. 253

[159] K. Fujita et al. Proc. Natl. Acad. Sci. USA, 111 (2014)

[160] R. Comin et al. Nat. Mater., 14 (2015), p. 796

[161] E. Fradkin; S.A. Kivelson; J.M. Tranquada Rev. Mod. Phys., 87 (2015), p. 457

[162] S. Kawasaki et al., 2017 arXiv.1704.06169

[163] P. Fulde; R. Ferrell Phys. Rev., 135 (1964), p. A550

[164] A.I. Larkin; Y.N. Ovchinnikov Sov. Phys. JETP, 20 (1965), p. 762

[165] V. Jaccarino; M. Peter Phys. Rev. Lett., 9 (1962), p. 290

[166] K. Maki Phys. Rev., 148 (1996), p. 362

[167] L.W. Gruenberg; L. Gunther Phys. Rev. Lett., 16 (1996), p. 996

[168] A. Bianchi et al. Phys. Rev. Lett., 91 (2003)

[169] J. Singleton et al. J. Phys. Condens. Matter, 12 (2000), p. L641

[170] R. Lortz et al. Phys. Rev. Lett., 99 (2007)

[171] B. Bergk et al. Phys. Rev. B, 83 (2011)

[172] S. Uji et al. Phys. Rev. Lett., 97 (2006)

[173] B.-L. Young et al. Phys. Rev. Lett., 98 (2007)

[174] M. Kenzelmann et al. Science, 321 (2008), p. 1652

[175] Y. Hatakeyama; R. Ikeda Phys. Rev. B, 91 (2015)

[176] D. Roditchev et al. Nat. Phys., 11 (2015), p. 332

[177] D.Y. Kim et al. Phys. Rev. X, 6 (2016)

[178] C.C. Agosta et al. Phys. Rev. B, 85 (2012)

[179] C.C. Agosta et al., 2016 | arXiv

[180] J.A. Wrightet et al. Phys. Rev. Lett., 107 (2011)

[181] A.B. Vorontsov; J.A. Saul; M.J. Graf Phys. Rev. B, 72 (2005)

[182] B.M. Rosemeyer; A.B. Vorontsov Phys. Rev. B, 94 (2016)

[183] G. Koutroulakis et al. Phys. Rev. Lett., 116 (2016)

[184] A. Kobayashi et al. Chem. Lett., 22 (1993), p. 2179

[185] S. Uji et al. Nature, 410 (2001), p. 908

[186] L. Balicas et al. Phys. Rev. Lett., 87 (2001)

[187] http://www.hflsm.imr.tohoku.ac.jp/cgi-bin/?num=170606115304

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

From quantum oscillations to charge order in high-Tc copper oxides in high magnetic fields

Baptiste Vignolle; David Vignolles; Marc-Henri Julien; ...

C. R. Phys (2013)


Magnetism and superconductivity of heavy fermion matter

Jacques Flouquet; Georg Knebel; Daniel Braithwaite; ...

C. R. Phys (2006)


Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective

Denis Jerome; Claude Bourbonnais

C. R. Phys (2024)