Skip to main content
Log in

Feedback-mediated dynamics in two coupled nephrons

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Previously, we developed a dynamic model for the tubuloglomerular feedback (TGF) system in a single, short-looped nephron of the mammalian kidney. In that model, a semi-linear hyperbolic partial differential equation was used to represent two fundamental processes of solute transport in the nephron’s thick ascending limb (TAL): chloride advection by fluid flow along the TAL lumen and transepithelial chloride transport from the lumen to the interstitium. An empirical function and a time delay were used to relate glomerular filtration rate to the chloride concentration at the macula densa of the TAL. Analysis of the model equations indicated that stable limit-cycle oscillations (LCO) in nephron fluid flow and chloride concentration can emerge for sufficiently large feedback gain magnitude and time delay. In this study, the single-nephron model was extended to two nephrons, which were coupled through their filtration rates. Explicit analytical conditions were obtained for bifurcation loci corresponding to two special cases: (1) identical time delays but differing feedback gains, and (2) identical gains but differing delays. Similar to the case of a single nephron, our analysis indicates that stable LCO can emerge in coupled nephrons for sufficiently large gains and delays. However, these LCO may emerge at lower values of the feedback gain, relative to a single (i.e., uncoupled) nephron, or at shorter delays, provided the delays are sufficiently close. These results suggest that, in vivo, if two nephrons are sufficiently similar, then coupling will tend to increase the likelihood of LCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, M. D., N. Carlsson, E. Mosekilde and N.-H. Holstein-Rathlou (2002). Dynamic model of nephron-nephron interaction, in Membrane Transport and Renal Physiology, The IMA Volumes in Mathematics and its Applications 129, H. E. Layton and A. M. Weinstein (Eds), New York: Springer, pp. 365–391.

    Google Scholar 

  • Barfred, M., E. Mosekilde and N.-H. Holstein-Rathlou (1996). Bifurcation analysis of nephron pressure and flow regulation. Chaos 6, 280–287.

    Article  Google Scholar 

  • Briggs, J. (1982). A simple steady-state model for feedback control of glomerular filtration rate. Kidney Int. 22(Suppl. 12), S143–S150.

    Google Scholar 

  • Casellas, D., M. Dupont, N. Bouriquet, L. C. Moore, A. Artuso and A. Mimran (1994). Anatomic pairing of afferent arterioles and renin cell distribution in rat kidneys. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36), F931–F936.

    Google Scholar 

  • Casellas, C. and L. C. Moore (1990). Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27), F660–F669.

    Google Scholar 

  • Chen, Y.-M, K.-P. Yip, D. J. Marsh and N.-H. Holstein-Rathlou (1995). Magnitude of TGF-initiated nephron-nephron interaction is increased in SHR. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38), F198–F204.

    Google Scholar 

  • Cupples, W. A., P. Novak, V. Novak and F. C. Salevsky (1996). Spontaneous blood pressure fluctuations and renal blood flow dynamics. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39), F82–F89.

    Google Scholar 

  • Holstein-Rathlou, N.-H. (1987). Synchronization of proximal intratubular pressure oscillations: evidence for interaction between nephrons. Pflügers Arch. 408, 438–443.

    Article  Google Scholar 

  • Holstein-Rathlou, N.-H. (1991). A closed-loop analysis of the tubuloglomerular feedback mechanism. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30), F880–F889.

    Google Scholar 

  • Holstein-Rathlou, N.-H. and P. P. Leyssac (1986). TGF-mediated oscillations in proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol. Scand. 126, 333–339.

    Article  Google Scholar 

  • Holstein-Rathlou, N.-H. and P. P. Leyssac (1987). Oscillations in the proximal intratubular pressure: a mathematical model. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21), F560–F572.

    Google Scholar 

  • Holstein-Rathlou, N.-H. and D. J. Marsh (1989). Oscillations of tubular pressure, flow, and distal chloride concentration in rats. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25), F1007–F1014.

  • Holstein-Rathlou, N.-H. and D. J. Marsh (1990). A dynamic model of the tubuloglomerular feedback mechanism. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27), F1448–F1459.

  • Holstein-Rathlou, N.-H. and D. J. Marsh (1994). A dynamic model of renal blood flow autoregulation. Bull. Math. Biol. 56, 411–430.

    Article  MATH  Google Scholar 

  • Just, A., U. Wittmann, H. Ehmke and H. R. Kirchheim (1998). Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback. J. Physiol. 506.1, 275–290.

    Article  Google Scholar 

  • Källskog, Ö. and D. J. Marsh (1990). TGF-initiated vascular interactions between adjacent nephrons in the rat kidney. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28), F60–F64.

    Google Scholar 

  • Layton, H. E. and E. B. Pitman (1994). A dynamic numerical method for models of renal tubules. Bull. Math. Biol. 56, 547–565.

    Article  MATH  Google Scholar 

  • Layton, H. E., E. B. Pitman and L. C. Moore (1991). Bifurcation Analysis of TGF-mediated oscillations in SNGFR. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30), F904–F919.

    Google Scholar 

  • Layton, H. E., E. B. Pitman and L. C. Moore (1995). Instantaneous and steady-state gains in the tubuloglomerular feedback system. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37), F163–F174.

    Google Scholar 

  • Layton, H. E., E. B. Pitman and L. C. Moore (1997a). Nonlinear filter properties of the thick ascending limb. Am. J. Physiol. 273 (Renal Physiol. 42), F625–F634.

    Google Scholar 

  • Layton, H. E., E. B. Pitman and L. C. Moore (1997b). Spectral properties of the tubuloglomerular feedback system. Am. J. Physiol. 273 (Renal Physiol. 42), F635–F649.

    Google Scholar 

  • Layton, H. E., E. B. Pitman and L. C. Moore (2000). Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery. Am. J. Physiol. Renal Physiol. 278, F287–F301.

    Google Scholar 

  • Leyssac, P. P. (1986). Further studies on oscillating tubulo-glomerular feedback responses in the rat kidney. Acta Physiol. Scand. 126, 271–277.

    Google Scholar 

  • Leyssac, P. P. and L. Baumbach (1983). An oscillating intratubular pressure response to alterations in Henle flow in the rat kidney. Acta Physiol. Scand. 117, 415–419.

    Google Scholar 

  • Oldson, D. R., L. C. Moore and H. E. Layton (2003). Effect of sustained flow perturbations on stability and compensation of tubuloglomerular feedback. Am. J. Physiol. Renal Physiol. 285, F972–F989.

    Google Scholar 

  • Pitman, E. B., H. E. Layton and L. C. Moore (1993). Dynamic flow in the nephron: filtered delay in the TGF pathway. Contemp. Math. 141, 317–336.

    Google Scholar 

  • Pitman, E. B., R. M. Zaritski, L. C. Moore and H. E. Layton (2002). A reduced model for nephron flow dynamics mediated by tubuloglomerular feedback, in Membrane Transport and Renal Physiology, The IMA Volumes in Mathematics and its Applications 129, H. E. Layton and A. M. Weinstein (Eds), New York: Springer, pp. 345–364.

    Google Scholar 

  • Ren, Y., O. A. Carretero and J. L. Garvin (2002). Role of mesangial cells and gap junctions in tubuloglomerular feedback. Kidney Int. 62, 525–531.

    Article  Google Scholar 

  • Schnermann, J. and J. P. Briggs (2000). Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion, in The Kidney: Physiology and Pathophysiology, 3rd edn., D. W. Seldin and G. Giebisch (Eds), Philadelphia: Lippincott Williams & Wilkins, pp. 945–980.

    Google Scholar 

  • Sosnovtseva, O. V., D. E. Postnov, E. Mosekilde and N.-H. Holstein-Rathlou (2003). Synchronization of tubular pressure oscillations in interacting nephrons. Chaos Solitons Fractals 15, 343–369.

    Article  MathSciNet  Google Scholar 

  • Vander, A. J. (1995). Renal Physiology, New York: McGraw-Hill.

    Google Scholar 

  • Wagner, A. J., N.-H. Holstein-Rathlou and D. J. Marsh (1997). Internephron coupling by conducted vasomotor responses in normotensive and spontaneously hypertensive rats. Am. J. Physiol. 272 (Renal Physiol. 41), F372–F379.

    Google Scholar 

  • Yip, K.-P., N.-H. Holstein-Rathlou and D. J. Marsh (1991). Chaos in blood flow control in genetic and renovascular hypertensive rats. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30), F400–F408.

    Google Scholar 

  • Yip, K.-P., N.-H. Holstein-Rathlou and D. J. Marsh (1992). Dynamics of TGF-initiated nephron-nephron interactions in normotensive rats and SHR. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31), F980–F988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bruce Pitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitman, E.B., Zaritski, R.M., Kesseler, K.J. et al. Feedback-mediated dynamics in two coupled nephrons. Bull. Math. Biol. 66, 1463–1492 (2004). https://doi.org/10.1016/j.bulm.2004.01.006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.01.006

Keywords

Navigation