Skip to main content
Log in

Microstructure-based finite element modelling and characterisation of bovine trabecular bone

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The mechanical behaviour of trabecular bone is dependent on both the properties of individual trabeculae as well as their three-dimensional arrangement in space. In this study, nanoindentation was used to determine trabecular stiffness of bovine bone, both dehydrated and rehydrated. Values of 18.3 GPa and 14.3 GPa were obtained for dehydrated and rehydrated trabeculae respectively. These values were then used for finite element analysis where the mesh was generated directly from an X-ray microtomography dataset. The relationship between intrinsic tissue properties and apparent stiffness was explored. Moreover, the important role of collagen in bone micromechanics was demonstrated by complementing the study with Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rho J-Y, Tsui T Y, Pharr G M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials, 1997, 18, 1325–1330.

    Article  Google Scholar 

  2. Rho J-Y, Pharr G M. Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. Journal of Materials Science: Materials in Medicine, 1999, 10, 485–488.

    Google Scholar 

  3. Hengsberger S, Kulik A, Zysset Ph. Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone, 2002, 30, 178–184.

    Article  Google Scholar 

  4. Rho J-Y, Ashman R B, Turner C H. Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. Journal of Biomechanics, 1993, 26, 111–119.

    Article  Google Scholar 

  5. Weiner S, Wagner H D. The material bone: Structure- mechanical function relations. Annual Reviews Material Research, 1998, 28, 271–398.

    Google Scholar 

  6. Evans F G. Mechanical Properties of Bone. Charles C Thomas Publisher, Illinois, USA, 1973.

    Google Scholar 

  7. Røhl P, Larsen E, Linde F, Odgaard A, Jørgensen J. Tensile and compressive properties of cancellous bone. Journal of Biomechanics, 1991, 24, 1143–1149.

    Article  Google Scholar 

  8. Ruegsegger P, Koller B, Muller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcified Tissue International, 1996, 58, 24–29.

    Article  Google Scholar 

  9. Ulrich D, van Rietbergen B, Weinans H, Ruegsegger P. Finite element analysis of trabecular bone structure: A comparison of image-based meshing techniques. Journal of Biomechanics, 1998, 31, 1187–1192.

    Article  Google Scholar 

  10. Bayraktar H H, Keaveny T M. Mechanisms of uniformity of yield strains for trabecular bone. Journal of Biomechanics, 2004, 37, 1671–1678.

    Article  Google Scholar 

  11. Hutmacher D W. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21, 2529–2543.

    Article  Google Scholar 

  12. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic. Journal of Biomedical Materials Research, 1990, 24, 721–734.

    Article  Google Scholar 

  13. Akhtar R, Morse S, Mummery P M. Nanoindentation of bone in a physiological environment. Materials Research Society Symposium Proceedings, 2004, 841, 15–20.

    Article  Google Scholar 

  14. Kak A C, Slaney M. Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1987.

    MATH  Google Scholar 

  15. Radon J. Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten. Berichte Sächsische Akadamie der Wissenschaften, Leipzig, Math.-Phys. Kl., 1917, 69, 262–267.

    MATH  Google Scholar 

  16. Badel E, Letang J-M, Peix G, Babot D. Quantitative microtomography: Measurement of density distribution in glass wool and local evolution during a one-dimensional compressive load. Measurement Science and Technology, 2003, 14, 410–420.

    Article  Google Scholar 

  17. Hernandez C J, Beaupre G S, Keller T S, Carter D R. The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone, 2001, 29, 74–78.

    Article  Google Scholar 

  18. Lee D D, Glimcher M J. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone. Journal of Molecular Biology, 1991, 217, 487–501.

    Article  Google Scholar 

  19. Jaasma M J, Bayraktar H H, Niebur G L, Keaveny M. Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. Journal of Biomechanics, 2002, 35, 237–246.

    Article  Google Scholar 

  20. Gibson L J. Biomechanics of cellular solids. Journal of Biomechanics, 2005, 38, 377–399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Akhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtar, R., Eichhorn, S.J. & Mummery, P.M. Microstructure-based finite element modelling and characterisation of bovine trabecular bone. J Bionic Eng 3, 3–9 (2006). https://doi.org/10.1016/S1672-6529(06)60001-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(06)60001-2

Keywords

Navigation