Comptes Rendus
Aspects of crystal growth within carbon nanotubes
[Cristallisation à l'intérieur de nanotubes de carbone]
Comptes Rendus. Physique, Volume 4 (2003) no. 9, pp. 1063-1074.

Cette étude décrit la cristallisation et l'imagerie HRTEM d'hallogènes binaires simples formés de iodures alcalins MI (M = Li, K, Na, Rb, et Cs) à l'intérieur de nanotubes de carbone à paroi unique (SWNT). Bien que le type de structure habituellement observée à l'intérieur des SWNT soit de type NaCl, CsI semble former des structures cc ainsi que des structures de type NaCl. Pour les SWNT de l'ordre de 1,2 à 1,6 nm de diamètre, tous les types d'hallogènes adoptent une orientation privilégiée, avec une direction de croissance 〈100〉 dominante pour le type d'arrangement NaCl, et 〈112〉 obtenu exclusivement dans le cas des arrangements de type cc. Les cristaux d'épaisseur comprise entre 2 et 6 couches d'atomes produisent invariablement des dilatations de réseau principalement attribuées à une réduction nette de coordination à l'interface cristal-carbone. La cristallisation de liquides eutectiques de UCl4–KCl et de AgI–AgCl a été étudiée pour des nanotubes de carbone de différents diamètres et une tendance prononcée à la mise en ordre cristalline préférentiellement à l'état vitreux a été observée dans les capillaires les plus fins. HgI2 cristallise dans des nanotubes capillaires ultrafins (ex : 0,8 nm) en formant des couches cristallines helicoı̈dales 2×1.

The comparative crystallisation and HRTEM imaging properties of simple binary halides formed by the alkali iodides MI (M = Li, K, Na, Rb and Cs) within single walled carbon nanotubes (SWNTs) are described. The most common structure type observed within SWNTs is the rocksalt archetype, although CsI was observed to form both bcc and rocksalt structure types. In SWNTs forming in the 1.2–1.6 nm diameter range, all of the incorporated halides showed preferred orientation, with the 〈100〉 growth direction predominating for rocksalt-type packing and 〈112〉 so far observed exclusively for bcc packing. Crystals with dimensions spanning 2–6 atomic layers thickness in projection invariably exhibited lattice expansions that were attributed predominantly to a net reduction in coordination at the crystal-carbon interface. The crystallisation behaviour of UCl4–KCl and AgI–AgCl eutectic melts was compared in carbon nanotubes of different diameters and a pronounced ordering influence over the normally glassy melts was observed in narrower capillaries. HgI2 crystallised within nanotubes with ultra-narrow (i.e., 0.8 nm) capillaries were observed to form helical 2 ×1 layer crystals.

Publié le :
DOI : 10.1016/S1631-0705(03)00102-6
Jeremy Sloan 1, 2 ; Angus I. Kirkland 3 ; John L. Hutchison 2 ; Malcolm L.H. Green 1

1 Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
2 Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
3 Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
@article{CRPHYS_2003__4_9_1063_0,
     author = {Jeremy Sloan and Angus I. Kirkland and John L. Hutchison and Malcolm L.H. Green},
     title = {Aspects of crystal growth within carbon nanotubes},
     journal = {Comptes Rendus. Physique},
     pages = {1063--1074},
     publisher = {Elsevier},
     volume = {4},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00102-6},
     language = {en},
}
TY  - JOUR
AU  - Jeremy Sloan
AU  - Angus I. Kirkland
AU  - John L. Hutchison
AU  - Malcolm L.H. Green
TI  - Aspects of crystal growth within carbon nanotubes
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 1063
EP  - 1074
VL  - 4
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00102-6
LA  - en
ID  - CRPHYS_2003__4_9_1063_0
ER  - 
%0 Journal Article
%A Jeremy Sloan
%A Angus I. Kirkland
%A John L. Hutchison
%A Malcolm L.H. Green
%T Aspects of crystal growth within carbon nanotubes
%J Comptes Rendus. Physique
%D 2003
%P 1063-1074
%V 4
%N 9
%I Elsevier
%R 10.1016/S1631-0705(03)00102-6
%G en
%F CRPHYS_2003__4_9_1063_0
Jeremy Sloan; Angus I. Kirkland; John L. Hutchison; Malcolm L.H. Green. Aspects of crystal growth within carbon nanotubes. Comptes Rendus. Physique, Volume 4 (2003) no. 9, pp. 1063-1074. doi : 10.1016/S1631-0705(03)00102-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00102-6/

[1] S. Iijima; T. Ichihashi Nature, 363 (1993), p. 603

[2] D.S. Bethune; C.H. Kiang; M.S. de Vries; G. Gorman; R. Savoy; J. Vazquez; R. Beyers Nature, 363 (1993), p. 605

[3] J. Sloan; A.I. Kirkland; J.L. Hutchison; M.L.H. Green J. Chem. Soc., Chem. Commun. (2002), p. 1319

[4] P.M. Ajayan; J.M. Lambert; P. Bernier; L. Barbedette; C. Colliex; J.M. Planeix Chem. Phys. Lett., 215 (1993), p. 509

[5] T. Guo; P. Nikolaev; A. Thess; D.T. Colbert; R.E. Smalley Chem. Phys. Lett., 243 (1995), p. 49

[6] P. Nikolaev; M.J. Bronikowski; R.K. Bradley; F. Rohmund; D.T. Colbert; K.A. Smith; R.E. Smalley Chem. Phys. Lett., 313 (1999), p. 91

[7] J. Sloan; M.C. Novotny; S.R. Bailey; G. Brown; C. Xu; V.C. Williams; S. Friedrichs; E. Flahaut; R.L. Callendar; A.P.E. York; K.S. Coleman; M.L.H. Green; R.E. Dunin-Borkowski; J.L. Hutchison Chem. Phys. Lett., 329 (2000), p. 61

[8] R.R. Meyer; J. Sloan; R.E. Dunin-Borkowski; A.I. Kirkland; M.C. Novotny; S.R. Bailey; J.L. Hutchison; M.L.H. Green Science, 289 (2000), p. 1324

[9] J. Sloan; S.J. Grosvenor; S.R. Friedrichs; A.I. Kirkland; J.L. Hutchison; M.L.H. Green Angew. Chem. Int. Ed., 114 (2002), p. 1204

[10] C. Xu; J. Sloan; G. Brown; S.R. Bailey; V.C. Williams; S. Friedrichs; K.S. Coleman; E. Flahaut; J.L. Hutchison; R.E. Dunin-Borkowski; M.L.H. Green J. Chem. Soc., Chem. Commun. (2000), p. 2427

[11] M. Wilson; P.A. Madden J. Am. Chem. Soc., 123 (2001), p. 2101

[12] M. Wilson J. Chem. Phys., 116 (2002), p. 3027

[13] M. Wilson Chem. Phys. Lett., 366 (2002), p. 504

[14] J. Sloan; A.I. Kirkland; J.L. Hutchison; M.L.H. Green Accts. Chem. Res., 35 (2002), p. 1054

[15] S. Friedrichs; J. Sloan; M.L.H. Green; J.L. Hutchison; R.R. Meyer; A.I. Kirkland Phys. Rev. B, 64 (2001), p. 0454061

[16] D.J. Hornbaker; S.-J. Kahng; S. Misra; B.W. Smith; A.T. Johnson; E.J. Mele; D.E. Luzzi; A. Yazdani Science, 295 (2002), p. 828

[17] J. Lee; H. Kim; S.-J. Kahng; G. Kim; Y.-W. Son; J. Ihm; H. Kato; Z.W. Wang; T. Okazaki; H. Shinohara; Y. Kuk Nature, 415 (2002), p. 1005

[18] J. Sloan; S. Friedrichs; R.R. Meyer; A.I. Kirkland; J.L. Hutchison; M.L.H. Green Inorg. Chim. Acta, 330 (2002), p. 1

[19] J. Sloan; M. Terrones; S. Nufer; S. Friedrichs; S.R. Bailey; H.G. Woo; M. Rühle; J.L. Hutchison; M.L.H. Green J. Am. Chem. Soc., 124 (2002), p. 2116

[20] H. Kataura; Y. Maniwa; T. Kodama; K. Kikuchi; K. Hirahara; S. Iijima; S. Suzuki; W. Krätschmer; Y. Achiba AIP Conf. Proc., 591 (2001), p. 251

[21] B.W. Smith; R.M. Russo; S.B. Chikkannanavar; D.E. Luzzi J. Appl. Phys., 91 (2002), p. 9333

[22] G. Brown; S.R. Bailey; M. Novotny; R. Carter; E. Flahaut; K.S. Coleman; J.L. Hutchison; M.L.H. Green; J. Sloan Appl. Phys. A, 76 (2003), pp. 1-6

[23] C. Journet; W.K. Maser; P. Bernier; A. Loiseau; M. Lamy de la Chappelle; S. Lefrant; P. Derniard; R. Lee; J.E. Fisher Nature, 388 (1997), p. 756

[24] P.M. Ajayan; S. Iijima Nature, 361 (1993), p. 333

[25] J. Sloan; D.M. Wright; H.G. Woo; S. Bailey; G. Brown; A.P.E. York; K.S. Coleman; J.L. Hutchison; M.L.H. Green J. Chem. Soc., Chem. Commun. (1999), p. 699

[26] P. Cortona Phys. Rev. B, 46 (1992), p. 2008

[27] R.B. Srinivasa; S.P. Sanyal Phys. Rev. B, 42 (1990), p. 1810

[28] M. Ahtee Annal. Acad. Sci. Fenn. Ser. A6, 313 (1969), p. 1

[29] M. Blackman; I.H. Khan Proc. Roy. Soc., 77 (1961), p. 471

[30] G. Brown; S.R. Bailey; J. Sloan; C. Xu; S. Friedrichs; E. Flahaut; K.S. Coleman; M.L.H. Green; J.L. Hutchison; R.E. Dunin-Borkowski J. Chem. Soc., Chem. Commun. (2001), p. 845

[31] A.F. Wells Structural Inorganic Chemistry, Clarendon Press, 1984 (p. 315)

[32] C.E. Weir; G.J. Piermarini J. Nat. Bur. Stand., 68 (1964), p. 105

[33] B.W. Smith; M. Monthioux; D.E. Luzzi Nature, 396 (1998), p. 323

[34] J. Sloan; R.E. Dunin-Borkowski; J.L. Hutchison; K.S. Coleman; V.C. Williams; J.B. Claridge; A.P.E. York; C. Xu; S.R. Bailey; G. Borwn; S. Friedrichs; M.L.H. Green Chem. Phys. Lett., 316 (2000), p. 191

[35] C.E. Weir; G.J. Piermarini J. Nat. Bur. Stand., 66 (1962), p. 325

[36] J. Sloan; J. Cook; A. Chu; M. Zwiefka-Sibley; M.L.H. Green; J.L. Hutchison J. Solid State Chem., 140 (1998), p. 83

[37] J. Sloan; M. Terrones; S. Nufer; S. Friedrichs; S.R. Bailey; H.G. Woo; M. Rühle; J.L. Hutchison; M.L.H. Green J. Am. Chem. Soc., 124 (2002), p. 2116

[38] A. Peigney; P. Coquay; E. Flahaut; R.E. Vandenberghe; E. De Grave; C. Laurent J. Phys. Chem. B, 105 (2001), p. 9699

[39] X. Cu, Ph.D. Thesis, Oxford, 2001, pp. 220–223.

[40] R.J. Havighurst J. Am. Chem. Soc., 48 (1926), p. 2113

[41] X. Fan; E.C. Dickey; P.C. Eklund; K.A. Williams; L. Grigorian; R. Buckzo; S.T. Pantelides; S.J. Pennycook Phys. Rev. Lett., 84 (2000), p. 4621

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Carbon nanotubes: from science to applications

Pierre Petit; Annick Loiseau

C. R. Phys (2003)


Nucleation and growth of SWNT: TEM studies of the role of the catalyst

Annick Loiseau; Julie Gavillet; François Ducastelle; ...

C. R. Phys (2003)


Electron field emission from carbon nanotubes

Yuan Cheng; Otto Zhou

C. R. Phys (2003)