The use of cyclic monoterpenoids as enantiopure starting materials in natural product synthesis

https://doi.org/10.1016/S1572-5995(06)80054-2Get rights and content

Publisher Summary

Chiral monoterpenoids are included in the large number of chiral starting materials (the so-called chiral pool) used in natural product synthesis. Not all of these compounds are available in both enantiomeric forms; however, this limits their versatility as chiral starting materials. Readily available chiral monoterpenoids are valuable and versatile starting materials for the enantiospecific synthesis of natural products and their widespread use in this respect is illustrated by the many successful syntheses. Although camphor is commercially available in both enantiomeric forms, (−)-camphor is approximately five to ten times more expensive than (+)-camphor. Fortunately, (−)-camphor can be prepared by oxidation of commercially available (−)-borneol with relatively inexpensive oxidizing agents. The versatility of (+)-camphor and (−)-camphor as enantiopure starting materials in natural product synthesis is because of the fact that the camphor structure can be functionalized regiospecifically. This chapter summarizes of the methods available for the regiospecific functionalization of camphor.

References (378)

  • J. Crosby

    Tetrahedron

    (1991)
    S.D. Rychnovsky et al.

    J. Org. Chem.

    (1992)
    W. Gaffield
  • R.V. Stevens et al.

    J. Org. Chem.

    (1967)
  • M. Tamura et al.

    Tetrahedron Lett.

    (1981)
  • R.V. Stevens et al.

    Tetrahedron

    (1985)
  • R.V. Stevens et al.

    J. Am. Chem. Soc.

    (1983)
    R.V. Stevens et al.

    J. Am. Chem. Soc.

    (1986)
  • W.M. Dadson et al.

    Can. J. Chem.

    (1990)
  • A.M.T. Finch et al.

    J. Am. Chem. Soc.

    (1969)
  • W.M. Dadson et al.

    Can. J. Chem.

    (1983)
  • J. Bredt et al.

    J. Prakt. Chem.

    (1917)
  • J. Bredt et al.

    J. Prakt. Chem.

    (1928)

    Chem. Abstr.

    (1928)
  • J.W. ScottR.M. Carman et al.

    Aust. J. Chem.

    (1993)
  • V. Rautenstrauch et al.

    J. Am. Chem. Soc.

    (1992)
    V. Rautenstrauch et al.

    Helv. Chim. Acta

    (1993)
  • S.O. Nwaukwa et al.

    Tetrahedron Lett.

    (1982)
  • W. Oppolzer et al.

    Helv. Chim. Acta

    (1981)
  • T. Money

    Nat. Prod. Rep.

    (1985)
    T. Money
  • P.D. Bartlett et al.

    Org. Synth.

    (1965)

    Org. Synth., Coll

    (1973)
  • P.D. Bartlett et al.

    Org. Synth.

    (1965)
  • G.C. Joshi et al.

    J. Org. Chem.

    (1972)
  • N. Fischer et al.

    Org. Synth.

    (1968)

    Org. Synth., Coll.

    (1973)
  • H.E. Armstrong et al.

    J. Chem. Soc.

    (1902)
  • F. Dallacker et al.

    Justus Liebigs Ann. Chem.

    (1963)
  • H.-J. Liu et al.

    Can. J. Chem.

    (1982)
  • H.-J. Liu et al.

    Can. J. Chem.

    (1988)
  • S. Danishefsky et al.

    J. Am. Chem. Soc.

    (1980)
  • L.A. Paquette et al.

    Helv. Chim. Acta

    (1992)
    L.A. Paquette et al.

    Helv. Chim. Acta

    (1992)
  • H. Nishimitsu et al.

    Chem. Abstr.

    (1952)
  • E.J. Corey et al.

    J. Am. Chem. Soc.

    (1957)
  • K.M. Baker et al.

    Tetrahedron

    (1968)
  • R.V. Stevens et al.

    J. Am. Chem. Soc.

    (1983)
  • V. Vaillancourt et al.

    J. Org. Chem.

    (1991)
  • W.L. Meyer et al.

    J. Org. Chem.

    (1967)
  • E.J. Corey et al.

    J. Am. Chem. Soc.

    (1967)
  • S.Y. Kamat et al.

    Tetrahedron

    (1967)
  • R.G. Lewis et al.

    Tetrahedron Lett.

    (1967)
  • E.J. Corey et al.

    J. Am. Chem. Soc.

    (1970)
  • J. Colonge et al.

    Bull. Soc. Chim. Fr.

    (1966)
  • E.J. Corey et al.

    J. Am. Chem. Soc.

    (1970)
  • C.R. Eck et al.

    J. Chem. Soc., Perkin Trans

    (1974)
  • V. Vaillancourt et al.

    J. Org. Chem.

    (1992)
  • V. Vaillancourt et al.

    J. Am. Chem. Soc.

    (1993)
  • P.T. Lansbury et al.

    J. Org. Chem.

    (1985)
  • A.S. Narula et al.

    Tetrahedron Lett.

    (1984)
  • D.L. Kuo et al.

    Can. J. Chem.

    (1988)
  • T. Money et al.

    J. Chem. Soc., Perkin Trans.

    (1975)
  • P. Cachia et al.

    J. Chem. Soc., Perkin Trans.

    (1976)
  • E.J. Corey et al.

    J. Am. Chem. Soc.

    (1959)
  • W.L. Meyer et al.

    J. Org. Chem.

    (1977)
  • O.R. Rodig et al.

    J. Org. Chem.

    (1971)
  • P. Cachia et al.

    Can. J. Chem.

    (1980)
  • J.H. Hutchinson et al.

    Can. J. Chem.

    (1986)
  • Cited by (17)

    • Protecting group-free syntheses of natural products and biologically active compounds

      2014, Tetrahedron
      Citation Excerpt :

      The reaction of chromanyl cyclobutane 355 with ethyl propiolate then gave iso-eriobrucinols A and B (357 and 358, respectively) or eriobrucinol (not shown), depending on the Lewis acid catalyst used; unfortunately, the regioselectivity of these reactions is not high. (−)-Fusarisetin A (359) is a recently discovered fungal metabolite that inhibits metastasis in certain cancer cell lines without apparent cytotoxicity.172 The structural complexity of the molecule stems from a 6,6,5,5,5-fused pentacyclic ring system bearing 10 contiguous stereogenic centers.

    View all citing articles on Scopus
    View full text