Skip to main content
Log in

Inclusion evolution in 50CrVA spring steel by optimization of refining slag

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to control the CaO-Al2O3-SiO2-MgO system inclusions in 50CrVA spring steel in a lower melting temperature region, high temperature equilibrium experiments between steel and slag were performed in the laboratory, under the conditions of the initial slag basicity within 3–7 and the content of Al2O3 between 18–35 mass%, to investigate the formation and evolution of this type of inclusion. The results indicate that the total oxygen content in the steel decreases with the increase of slag basicity and the decrease of Al2O3 content in slags, and CaO-Al2O3-SiO2-MgO inclusions tend to deviate from the low melting point region with the increase of Al2O3 content in slags. The most favorable composition for the refining slag is composed of 51–56 mass% CaO, 9–13 mass% SiO2, 20–25 mass% Al2O3 and 6 mass% MgO. In this case, the inclusions in 50CrVA spring steel are mostly in the low melting point regions, in which their plasticities are expected to improve during steel rolling. The MgO-based inclusions were observed in the steel matrix and the formation mechanism was theoretically and schematically revealed. It is also found that adding around 11 mass% of MgO into the refining slags is beneficial to reducing the refractory corrosion. Further work should be carried out focusing on the evolution rates of MgO-based inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, H. Y. Tang, T. Wu, J. S. Li, S. F. Yang, Chinese Journal of Engineering 38 (2016) Suppl. 1, 187–194 (in Chinese).

    Google Scholar 

  2. X. Y. Lu, G. J. Gan, X. T. Ke, R. Q. Wang, J. Dong, Iron Steel Vanadium Titanium 22 (2001) No. 4, 22–27 (in Chinese).

    Google Scholar 

  3. Y. Wang, H. Y. Tang, T. Wu, J. S. Li, in: The 19th CSM Steel-making Conference Proceedings, Changsha, 2016, pp. 184–192 (in Chinese).

  4. H. Y. Tang, Y. Wang, T. Wu, J. S. Li, S. F. Yang, Ironmak. Steelmak. 44 (2017) 377–388.

    Article  Google Scholar 

  5. X. F. He, X. H. Wang, S. H. Chen, Ironmak. Steelmak. 41 (2014) 676–684.

    Article  Google Scholar 

  6. S. H. Chen, M. Jiang, X. F. He, Int. J. Miner. Metall. Mater. 19 (2012) 490–498.

    Article  Google Scholar 

  7. J. S. Park, J. H. Park, Metall. Mater. Trans. B 45 (2014) 953–960.

    Article  Google Scholar 

  8. M. Jiang, X. H. Wang, J. J. Pak, Metall. Mater. Trans. B 45 (2014) 1248–1259.

    Article  Google Scholar 

  9. W. J. Ma, Y. P. Bao, M. Wang, D. W. Zhao, Ironmak. Steelmak. 41 (2014) 26–30.

    Article  Google Scholar 

  10. W. Yang, X. H. Wang, L. F. Zhang, Q. L. Shan, X. F. Liu, Steel Res. Int. 84 (2013) 473–489.

    Article  Google Scholar 

  11. Y. Hu, W. Q. Chen, Ironmak. Steelmak. 43 (2016) 340–350.

    Article  Google Scholar 

  12. G. Okuyama, K. Yamaguchi, S. Takeuchi, K. I. Sorimachi, ISIJ Int. 40 (2000) 121–128.

    Article  Google Scholar 

  13. Y. Ren, L. F. Zhang, W. Fang, S. J. Shao, J. Yang, W. D. Miao, Metall. Mater. Trans. B 47 (2016) 1024–1034.

    Article  Google Scholar 

  14. B. Chen, Investigation on Liquid Steel-slag Equilibrium and the Non-matallic Inclusion in Alloying Structural Steels, University of Science and Technology Beijing, Beijing, 2008 (in Chinese).

    Google Scholar 

  15. H. Park, S. B. Lee, S. K. Dong, Metall. Mater. Trans. B 36 (2005) 67–73.

    Article  Google Scholar 

  16. M. Jiang, X. H. Wang, B. Chen, W. J. Wang, ISIJ Int. 48 (2008) 885–890.

    Article  Google Scholar 

  17. J. W. Kim, S. K. Kim, D. S. Kim, Y. D. Lee, P. K. Yang, ISIJ Int. 36 (1996) s140–s143.

    Article  Google Scholar 

  18. B. H. Yoon, K. H. Heo, J. S. Kim, H. S. Sohn, Ironmak. Steelmak. 29 (2002) 214–217.

    Article  Google Scholar 

  19. M. Valdez, G. S. Shannon, S. Sridhar, ISIJ Int. 46 (2006) 450–457.

    Article  Google Scholar 

  20. H. Suito, R. Inoue, ISIJ Int. 36 (1996) 528–536.

    Article  Google Scholar 

  21. H. Ohta, H. Suito, Metall. Mater. Trans. B 27 (1996) 943–953.

    Article  Google Scholar 

  22. Z. L. Xue, Z. B. Li, J. W. Zhang, W. Yang, C. F. Gan, Y. Wang, J. Iron Steel Res. Int. 10 (2003) No. 2, 38–44.

    Google Scholar 

  23. H. H. Yang, J. S. Ye, X. L. Wu, Y. S. Peng, Y. Fang, X. B. Zhao, Metall. Mater. Trans. B 47 (2016) 1435–1444.

    Article  Google Scholar 

  24. L. Z. Wang, S. H. Yang, J. J. Li, T. Wu. W. Liu, J. Z. Xiong, Metall. Mater. Trans. B 47 (2016) 99–107.

    Article  Google Scholar 

  25. H. W. Yang, L. J. Su, G. Q. Li, Z. P. Chen, Z. H. Pi, Y. Zhou, Steelmaking 30 (2014) No. 4, 42–46 (in Chinese).

    Google Scholar 

  26. D. D. Tian, Y. L. Zhang, Q. B. Liu, X. S. Wen, J. Univ. Sci. Technol. Beijing 36 (2014) Suppl. 1, 126–132 (in Chinese).

    Google Scholar 

  27. L. L. Jin, H. T. Wang, Z. B. Xu, F. M. Wang, J. Univ. Sci. Technol. Beijing 29 (2007) 574–577 (in Chinese).

    Google Scholar 

  28. H. Ohta, H. Suito, Metall. Mater. Trans. B 29 (1998) 119–129.

    Article  Google Scholar 

  29. S. F. Yang, Q. Q. Wang, L. F. Zhang, J. S. Li, K. Peaslee, Metall. Mater. Trans. B 43 (2012) 731–750.

    Article  Google Scholar 

  30. J. Guo, S. S. Cheng, Z. J. Cheng, J. Iron Steel Res. Int. 21 (2014) 166–173.

    Article  Google Scholar 

  31. Z. Y. Deng, M. Y. Zhu, ISIJ Int. 53 (2013) 450–458.

    Article  Google Scholar 

  32. Y. J. Kang, F. Li, K. Morita, Steel Res. Int. 77 (2006) 785–792.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-yan Tang Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Hy., Wang, Y., Wu, Gh. et al. Inclusion evolution in 50CrVA spring steel by optimization of refining slag. J. Iron Steel Res. Int. 24, 879–887 (2017). https://doi.org/10.1016/S1006-706X(17)30130-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30130-9

Key words

Navigation