Skip to main content
Log in

Carbides Evolution in 12Cr Martensitic Heat-resistant Steel with Life Depletion for Long-term Service

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Evaluating the residual life of exposed components in power industry is a very important procedure in routine examination. The microstructures of a series of X20CrMoV12.1 martensitic superheater tube samples in a boiler in different service periods were investigated extensively to extract a quantitative relationship. During long-term service from start to rupture, hardness decreased monotonically with life depletion, and the decrease of hardness in prior austenite grain boundary was steeper than that in the matrix. Microstructure observation showed obvious damage characteristics, including carbide coarsening and martensite decomposing, and the martensite structure decomposed completely in rupture state. The morphology, distribution and composition of the main precipitates M23C6 varied distinctly. The aspect ratio of coarsened carbides along grain boundary increased several fold with respect to their original size. The composition of coarsened M23C6 carbide shows the most regular trend of Cr enrichment and the statistical result of Cr enrichment in M23C6 shows a linear correlation between the ratio of Cr to Fe and service time to the power of 3/2, which may be considered as an index of material degradation due to long-term service exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fujita, in: R. Viswanathan, W. T. Bakker, J. D. Parker (Eds.), Proc. 3rd Conference on Advances in Material Technology for Fossil Power Plants, The Institute of Materials, London, UK, 2001, pp. 33–65.

    Google Scholar 

  2. R. L. Klueh, A. T. Nelson, J. Nucl. Mater. 371 (2007) 37–52.

    Article  Google Scholar 

  3. J. Purmensky, V. Foldyna, Z. Kuboň, in: T. Sakuma, K. Yagi (Eds.), Proc. 8th International Conf. on Creep and Fracture of Engineering Materials and Structures, Tsukuba, Japan, 1999, pp. 419–426.

    Google Scholar 

  4. J. Hald, Int. J. Press. Vessels Pip. 85 (2008) 30–37.

    Article  Google Scholar 

  5. K. Yamada, M. Igarashi, S. Muneki, F. Abe, ISIJ Int. 43 (2003) 1438–1443.

    Article  Google Scholar 

  6. A. Benvenuti, D. D. Angelo, G. Fedeli, N. Ricci, in: P. K. Liaw, R. Viswanathan, K. L. Murty (Eds.), Proc. 1st International Conference, Microstructures and Mechanical Properties of Aging Materials, The Mineral, Metals & Materials Society, Warrendale, 1993, pp. 143–148.

    Google Scholar 

  7. F. Abe, Mater. Sci. Eng. A 510–511 (2009) 64–69.

    Article  Google Scholar 

  8. P. Battaini, D. D. Angelo, G. Marino, J. Hald, in: B. Wilshire (Eds.), Proc. 4th International Conference on Creep and Fracture of Engineering Materials and Structures, The Institute of Metals, London, UK, 1990, pp. 1039–1054.

    Google Scholar 

  9. G. Sposito, C. Ward, P. Cawley, P. B. Nagy, C. Scruby, NDT and E Int. 43 (2010) 555–576.

    Article  Google Scholar 

  10. P. Shewmon, P. Anderson, Acta Mater. 46 (1998) 4861–4872.

    Article  Google Scholar 

  11. Z. F. Hu, Z. G. Yang, Mater. Sci. Eng. A 383 (2004) 224–228.

    Article  Google Scholar 

  12. A. B. Ali, Evolution of Microstructure during Long-term Creep of a Tempered Martensite Ferritic Steel, Ruhr University Bochum, Germany, 2009.

    Google Scholar 

  13. F. Masuyama, Mater. Sci. Eng. A 510–511 (2009) 154–157.

    Article  Google Scholar 

  14. F. Abe, Mater. Sci. Eng. A 387 (2004) 565–569.

    Article  Google Scholar 

  15. C. G. Panait, A. Zielinska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A. F. Gourgues-Lorenzon, W. Bendick, Mater. Sci. Eng. A 527 (2010) 4062–4069.

    Article  Google Scholar 

  16. C. Panait, W. Bendick, A. Fuchsmann, A. F. Gourgues-lorenzon, J. Besson, in: I. A. Shibli, S. R. Holdsworth (Eds.), Proc. Creep & Fracture in High Temperature Components: Design & Life Assessment Issues, DEStech Publications, Lancaster, USA, 2009, pp. 877–888.

    Google Scholar 

  17. J. Hald, L. Korcakova, ISIJ Int. 43 (2003) 420–427.

    Article  Google Scholar 

  18. P. J. Ennis, in: W. T. Bakker, J. D. Parker (Eds.), Proc. of the Third Conference on Advances in Materials, Technology for Fossil Power Plants, The Institute of Materials, London, UK, 2001, pp. 187–194.

    Google Scholar 

  19. K. Sawada, K. Maruyama, Y. Hasegawa, T. Muraki, Key Eng. Mater. 171–174 (1999) 109–114.

    Article  Google Scholar 

  20. Z. F. Hu, Z. G. Yang, J. Mater. Eng. Perform. 12 (2003) 106–111.

    Article  Google Scholar 

  21. M. Hattestrand, H. O. Andren, Micron 32 (2001) 789–797.

    Article  Google Scholar 

  22. J. S. Kruszynska, K. R. Piekarski, D. M. R. Taplin, Mater. Sci. Technol. 1 (1985) 117–120.

    Article  Google Scholar 

  23. Z. F. Hu, Z. G. Yang, G. Q. He, C. S. Chen, J. Fail. Anal. and Preven. 8 (2008) 41–47.

    Article  Google Scholar 

  24. B. A. Senior, F. W. Noble, Mater. Sci. Technol. 1 (1985) 968–971.

    Article  Google Scholar 

  25. G. Eggeler, Acta Metall. 37 (1989) 3225–3234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-fei Hu.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (50871076)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Zf., He, Dh. & Mo, F. Carbides Evolution in 12Cr Martensitic Heat-resistant Steel with Life Depletion for Long-term Service. J. Iron Steel Res. Int. 22, 250–255 (2015). https://doi.org/10.1016/S1006-706X(15)60038-3

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)60038-3

Key words

Navigation