Skip to main content
Log in

Comparison of two projection methods for modeling incompressible flows in MPM

  • Special Column on MPM2017
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Material point method (MPM) was originally introduced for large deformation problems in solid mechanics applications. Later, it has been successfully applied to solve a wide range of material behaviors. However, previous research has indicated that MPM exhibits numerical instabilities when resolving incompressible flow problems. We study Chorin’ s projection method in MPM algorithm to simulate material incompressibility. Two projection-type schemes, non-incremental projection and incremental projection, are investigated for their accuracy and stability within MPM. Numerical examples show that the non-incremental projection scheme provides stable results in single phase MPM framework. Further, it avoids artificial pressure oscillations and small time steps that are present in the explicit MPM approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chorin A. J. Numerical solution of the navier-stokes equations [J]. Mathematics of Computation, 1968, 22(104): 745–762.

    Article  MathSciNet  Google Scholar 

  2. Schneider G., Raithby G., Yovanovich M. Finite element solution procedures for solving the incompressible, Navier-Stokes equations using equal order variable interpolation [J]. Numerical Heat Transfer, 1978, 1(4): 433–451.

    Article  Google Scholar 

  3. Kawahara M., Ohmiya K. Finite element analysis of density flow using the velocity correction method [J]. International Journal for Numerical Methods In Fluids, 1985, 5(11): 981–993.

    Article  MathSciNet  Google Scholar 

  4. Guermond J., Quartapelle L. Calculation of incompressible viscous flows by an unconditionally stable projection fem [J]. Journal of Computational Physics, 1997, 132(1): 12–33.

    Article  MathSciNet  Google Scholar 

  5. Stomakhin A., Schroeder C., Jiang C. et al. Augmented MPM for phase-change and varied materials [J]. ACM Transactions on Graphics, 2014, 33(4): 1–11.

    Article  Google Scholar 

  6. Kularathna S., Soga K. Implicit formulation of material point method for analysis of incompressible materials [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 313(1): 673–686.

    Article  MathSciNet  Google Scholar 

  7. Zhang F., Zhang X., Lian Y. P. et al. Incompressible material point method for free surface flow [J]. Journal of Computational Physics, 2017, 330: 92–110.

    Article  MathSciNet  Google Scholar 

  8. Guermond J., Minev P., Shen J. An overview of projection methods for incompressible flows [J]. Journal of Computational Physics, 2006, 195(44–47): 6011–6045.

    MathSciNet  MATH  Google Scholar 

  9. Ghia U., Ghia K., Shin C. High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method [J]. Journal of Computational Physics, 1982, 48(3): 387–411.

    Article  Google Scholar 

  10. Schreiber R., Keller H. Driven cavity flows by efficient numrical techniques [J]. Journal of Computational Physics, 1983, 49(2): 310–333.

    Article  Google Scholar 

  11. Kim J., Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations [J]. Journal of Computational Physics, 1985, 59(2): 308–323.

    Article  MathSciNet  Google Scholar 

  12. Sousa R. G., Poole R. J., Afonso A. M. et al. Lid-driven cavity flow of viscoelastic liquids [J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 234: 129–138.

    Article  MathSciNet  Google Scholar 

  13. Guermond J.-L., Quartapelle L. On stability and convergence of projection methods based on pressure Poisson equation [J]. International Journal For Numerical Methods in Fluids, 2015, 26(9): 1039–1053.

    Article  MathSciNet  Google Scholar 

  14. Lee E. S., Moulinec C., Xu R. et al. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method [J]. Journal of Computational Physics, 2008, 227(18): 8417–8436.

    Article  MathSciNet  Google Scholar 

  15. Liu M. B., Xie W. P., Liu G. R. Modeling incompressible flows using a finite particle method [J]. Applied Mathematical Modeling, 2005, 29(12): 1252–1270.

    Article  Google Scholar 

  16. Cruchaga M. A., Celentano D. J., Tezduyar T. E. Collapse of a liquid column: Numerical simulation and experimental validation [J]. Computational Mechanics, 2006, 39(4): 453–476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamini Kularathna.

Additional information

Biography: Shyamini Kularathna, Female, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kularathna, S., Soga, K. Comparison of two projection methods for modeling incompressible flows in MPM. J Hydrodyn 29, 405–412 (2017). https://doi.org/10.1016/S1001-6058(16)60750-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60750-3

Key words

Navigation