Skip to main content
Log in

Sharp interface direct forcing immersed boundary methods: A summary of some algorithms and applications

  • Review article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Body-fitted mesh generation has long been the bottleneck of simulating fluid flows involving complex geometries. Immersed boundary methods are non-boundary-conforming methods that have gained great popularity in the last two decades for their simplicity and flexibility, as well as their non-compromised accuracy. This paper presents a summary of some numerical algori- thms along the line of sharp interface direct forcing approaches and their applications in some practical problems. The algorithms include basic Navier-Stokes solvers, immersed boundary setup procedures, treatments of stationary and moving immersed bounda- ries, and fluid-structure coupling schemes. Applications of these algorithms in particulate flows, flow-induced vibrations, biofluid dynamics, and free-surface hydrodynamics are demonstrated. Some concluding remarks are made, including several future research directions that can further expand the application regime of immersed boundary methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEONARD A. Computing three-dimensional incompressible flows with vortex elements[J]. Annual Review of Fluid Mechanics, 1985, 17(1): 523–559.

    Article  MathSciNet  Google Scholar 

  2. MONAGHAN J. Smoothed particle hydrodynamics and its diverse applications[J]. Annual Review of Fluid Mechanics, 2012, 44: 323–346.

    Article  MathSciNet  MATH  Google Scholar 

  3. TUCKER P., PAN Z. A cartesian cut cell method for incompressible viscous flow[J]. Applied Mathematical Modelling, 2000, 24(8): 591–606.

    Article  MATH  Google Scholar 

  4. INGRAM D. M., CAUSON D. M. and MINGHAM C. G. Developments in cartesian cut cell methods[J]. Mathematics and Computers in Simulation, 2003, 61(3): 561–572.

    Article  MathSciNet  MATH  Google Scholar 

  5. PESKIN C. S. Flow patterns around heart valves: A numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252–271.

    Article  MathSciNet  MATH  Google Scholar 

  6. PESKIN C. S. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics, 1977, 25(3): 220–252.

    Article  MathSciNet  MATH  Google Scholar 

  7. PESKIN C. S. The immersed boundary method[J]. Acta Numerica, 2002, 11: 479–517.

    Article  MathSciNet  MATH  Google Scholar 

  8. GOLDSTEIN D., HANDLER R. and SIROVICH L. Modeling a no-slip flow boundary with an external force field[J]. Journal of Computational Physics, 1993, 105(2): 354–366.

    Article  MATH  Google Scholar 

  9. SAIKI E. M., BIRINGEN S. Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method[J]. Journal of Computational Physics, 1996, 123(2): 450–465.

    Article  MATH  Google Scholar 

  10. MOHD-YUSOF J. Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries[R]. Stanford, CA, USA: Annual Research Briefs, Center for Turbulence Research. Stanford University, 1997, 317–327.

    Google Scholar 

  11. FADLUN E. A., VERZICCO R. and ORLANDI P. et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J]. Journal of Computational Physics, 2000, 161(1): 35–60.

    Article  MathSciNet  MATH  Google Scholar 

  12. KIM J., KIM D. and CHOI H. An immersed-boundary finite-volume method for simulations of flow in complex geometries[J]. Journal of Computational Physics, 2001, 171(1): 132–150.

    Article  MathSciNet  MATH  Google Scholar 

  13. TSENG Y. H., FERZIGER J. H. A ghost-cell immersed boundary method for flow in complex geometry[J]. Journal of Computational Physics, 2003, 192(2): 593–623.

    Article  MathSciNet  MATH  Google Scholar 

  14. BALARAS E. Modeling complex boundaries using an external force field on fixed cartesian grids in large-eddy simulations[J]. Computers and Fluids, 2004, 33(3): 375–404.

    Article  MATH  Google Scholar 

  15. UHLMANN M. An immersed boundary method with direct forcing for the simulation of particulate flows[J]. Journal of Computational Physics, 2005, 209(2): 448–476.

    Article  MathSciNet  MATH  Google Scholar 

  16. FENG Z. G., MICHAELIDES E. E. Proteus: A direct forcing method in the simulations of particulate flows[J]. Journal of Computational Physics, 2005, 202(1): 20–51.

    Article  MATH  Google Scholar 

  17. ZHANG N., ZHENG Z. An improved direct-forcing immersed-boundary method for finite difference applications[J]. Journal of Computational Physics, 2007, 221(1): 250–268.

    Article  MathSciNet  MATH  Google Scholar 

  18. VANELLA M., BALARAS E. A moving-least-squares reconstruction for embedded-boundary formulations[J]. Journal of Computational Physics, 2009, 228(18): 6617–6628.

    Article  MATH  Google Scholar 

  19. YANG X., ZHANG X. and LI Z. et al. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations[J]. Journal of Computational Physics, 2009, 228(20): 7821–7836.

    Article  MathSciNet  MATH  Google Scholar 

  20. PINELLI A., NAQAVI I. and PIOMELLI U. et al. Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers[J]. Journal of Computational Physics, 2010, 229(24): 9073–9091.

    Article  MathSciNet  MATH  Google Scholar 

  21. KEMPE T., FRÖHLICH J. An improved immersed boundary method with direct forcing for the simulation of particle laden flows[J]. Journal of Computational Physics, 2012, 231(9): 3663–3684.

    Article  MathSciNet  MATH  Google Scholar 

  22. YANG J., BALARAS E. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries[J]. Journal of Computational Physics, 2006, 215(1): 12–40.

    Article  MathSciNet  MATH  Google Scholar 

  23. BALARAS E., YANG J. Nonboundary conforming methods for large-eddy simulations of biological flows[J]. Journal of Fluids Engineering, 2005, 127(5): 851–857.

    Article  Google Scholar 

  24. YANG J., PREIDIKMAN S. and BALARAS E. A strongly coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies[J]. Journal of Fluids and Structures, 2008, 24(2): 167–182.

    Article  Google Scholar 

  25. YANG J., STERN F. A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions[J]. Journal of Computational Physics, 2012, 231(15): 5029–5061.

    Article  MathSciNet  MATH  Google Scholar 

  26. YANG J., STERN F. Robust and efficient setup procedure for complex triangulations in immersed boundary simulations[J]. Journal of Fluids Engineering, 2014, 135(10): 101107.

    Article  Google Scholar 

  27. YANG J., STERN F. A non-iterative direct forcing immersed boundary method for strongly-coupled fluid-solid interactions[J]. Journal of Computational Physics, 2015, 295: 779–804.

    Article  MathSciNet  MATH  Google Scholar 

  28. YANG J., STERN F. Sharp interface immersed-boundary/level-set method for wave-body interactions[J]. Journal of Computational Physics, 2009, 228(17): 6590–6616.

    Article  MathSciNet  MATH  Google Scholar 

  29. YANG J., STERN F. Efficient simulation of fully coupled wave-body interactions using a sharp interface immersed-boundary/level-set method[C]. Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting. Montreal, Canada, 2010.

    Google Scholar 

  30. YANG J., STERN F. A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows[J]. Journal of Fluids Engineering, 2013, 136(4): 040904.

    Article  Google Scholar 

  31. BEDDHU M., TAYLOR L. K. and WHITFIELD D. L. Strong conservative form of the incompressible Navier-Stokes equations in a rotating frame with a solution procedure[J]. Journal of Computational Physics, 1996, 128(2): 427–437.

    Article  MATH  Google Scholar 

  32. KIM D., CHOI H. Immersed boundary method for flow around an arbitrarily moving body[J]. Journal of Computational Physics, 2006, 212(2): 662–680.

    Article  MathSciNet  MATH  Google Scholar 

  33. LEONARD B. P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation[J]. Computer Methods in Applied Mechanics and Engineering, 1979, 19(1): 59–98.

    Article  MathSciNet  MATH  Google Scholar 

  34. JIANG G.-S., SHU C.-W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202–228.

    Article  MathSciNet  MATH  Google Scholar 

  35. BEAM R. M., WARMING R. F. An implicit finite-difference algorithm for hyperbolic systems in conservationlaw form[J]. Journal of Computational Physics, 1976, 22(1): 87–110.

    Article  MathSciNet  MATH  Google Scholar 

  36. MATTOR N., WILLIAMS T. J. and HEWETT D. W. Algorithm for solving tridiagonal matrix problems in parallel[J]. Parallel Computing, 1995, 21(11): 1769–1782.

    Article  MathSciNet  Google Scholar 

  37. CHOI H., MOIN P. Effects of the computational time step on numerical solutions of turbulent flow[J]. Journal of Computational Physics, 1994, 113(1): 1–4.

    Article  MATH  Google Scholar 

  38. BROWN P. N., FALGOUT R. D. and JONES J. E. et al. Semicoars ening multigrid on distributed memory machines[J]. SIAM Journal on Scientific Computing, 2000, 21(5): 1823–1834.

    Article  MathSciNet  MATH  Google Scholar 

  39. SWARZTRAUBER P. N. A direct method for the discrete solution of separable elliptic equations[J]. SIAM Journal on Numerical Analysis, 1974, 11(6): 1136–1150.

    Article  MathSciNet  MATH  Google Scholar 

  40. POPINET S. The GNU triangulated surface library[OL]. http://gts.sourceforge.net/, [Online, accessed 1-January-2012], 2011.

    Google Scholar 

  41. O’ROURKE J. Computational geometry in C[M]. 2nd Edition, New York, USA: Cambridge University Press, 1998.

    MATH  Google Scholar 

  42. IACCARINO G., VERZICCO R. Immersed boundary technique for turbulent flow simulations[J]. Applied Mechanics Reviews, 2003, 56(3): 331–347.

    Article  Google Scholar 

  43. ERICSON C. Real-time collision detection[M]. San Francisco, USA: Morgan Kaufmann Publishers, 2005.

    Google Scholar 

  44. MORDANT N., PINTON J. F. Velocity measurement of a settling sphere[J]. European Physical Journal B - Condensed Matter and Complex Systems, 2000, 18(2): 343–352.

    Article  Google Scholar 

  45. GLOWINSKI R., PAN T. and HESLA T. et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow[J]. Journal of Computational Physics, 2001, 169(2): 363–426.

    Article  MathSciNet  MATH  Google Scholar 

  46. ANDERSEN A., PESAVENTO U. and WANG Z. J. Unsteady aerodynamics of fluttering and tumbling plates[J]. Journal of Fluid Mechanics, 2005, 541: 65–90.

    Article  MathSciNet  MATH  Google Scholar 

  47. STERN Frederick, WANG Zhao-yuan and YANG Jianming et al. Recent progress in CFD for naval architecture and ocean engineering[J]. Journal of Hydrodynamics, 2015, 27(1): 1–23.

    Article  Google Scholar 

  48. LIU P. L. F., WU T. R. and RAICHLEN F. et al. Runup and rundown generated by three-dimensional sliding masses[J]. Journal of Fluid Mechanics, 2005, 536: 107–144.

    Article  MATH  Google Scholar 

  49. YANG J., BHUSHAN S. and SUH J., et al. Large-eddy simulation of ship flows with wall-layer models on Cartesian grids[C]. Proceedings of the 27th Symposium on Naval Hydrodynamics, Seoul, Korea, 2008.

    Google Scholar 

  50. BHUSHAN S., CARRICA P. M. and YANG J. et al. Scalability studies and large grid computations for surface combatant using CFD Ship-Iowa[J]. International Journal of High Performance Computing Applications (in Press).

  51. PAIK K. J., CARRICA P. M. and LEE D. et al. Strongly coupled fluid-structure interaction method for structural loads on surface ships[J]. Ocean Engineering, 2009, 36(17–18): 1346–1357.

    Article  Google Scholar 

  52. YU Zhao-sheng, SHAO Xue-ming. A three-dimensional fictitious domain method for the simulation of fluid-structure interactions[J]. Journal of Hydrodynamics, 2010, 22(5Suppl.): 178–183.

    Article  Google Scholar 

  53. LIAO K., HU C. A coupled fdm-fem method for free surface flow interaction with thin elastic plate[J]. Journal of Marine Science and Technology, 2013, 18(1): 1–11.

    Article  Google Scholar 

  54. SHIN Sangmook, BAE Sung Yong. Simulation of water entry of an elastic wedge using the FDS scheme and HCIB method[J]. Journal of Hydrodynamics, 2013, 25(3): 450–458.

    Article  Google Scholar 

  55. TANG Chao, LU Xi-yun. Self-propulsion of a three-dimensional flapping flexible plate[J]. Journal of Hydrodynamics, 2016, 28(1): 1–9.

    Article  Google Scholar 

  56. LUO Xian-wu, JI Bin and TSUJIMOTO Yoshinobu. A review of cavitation in hydraulic machinery[J]. Journal of Hydrodynamics, 2016, 28(3): 335–358.

    Article  Google Scholar 

  57. BALARAS E., SCHROEDER S. and POSA A. Largeeddy simulations of submarine propellers[J]. Journal of Ship Research, 2015, 59(4): 227–237.

    Article  Google Scholar 

  58. MICHAEL T., YANG J. and STERN F. Sharp interface cavitation modeling using volume-of-fluid and level set methods[C]. Proceedings of the ASME 2013 Fluids Engineering Summer Meeting. Incline Village, Nevada, USA, 2013, FEDSM2013-16479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Jianming.

Additional information

Biography: Jianming YANG, Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jianming, Y. Sharp interface direct forcing immersed boundary methods: A summary of some algorithms and applications. J Hydrodyn 28, 713–730 (2016). https://doi.org/10.1016/S1001-6058(16)60675-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60675-3

Keywords

Navigation