Skip to main content
Log in

Three-dimensional steep wave impact on a vertical cylinder

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In the present study we investigate the 3-D hydrodynamic slamming problem on a vertical cylinder due to the impact of a steep wave that is moving with a steady velocity. The linear theory of the velocity potential is employed by assuming inviscid, incompressible fluid and irrotational flow. As the problem is set in 3-D space, the employment of the Wagner condition is essential. The set of equations we pose, is presented as a mixed boundary value problem for Laplace’s equation in 3-D. Apart from the mixedtype of boundary conditions, the problem is complicated by considering that the region of wetted surface of the cylinder is a set whose boundary depends on the vertical coordinate on the cylinder up to the free-surface. We make some simple assumptions at the start but otherwise we proceed analytically. We find closed-form relations for the hydrodynamic variables, namely the time dependent potential, the pressure impulse, the shape of the wave front (from the contact point to beyond the cylinder) and the slamming force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BULLOCK G. N., OBHRAI C. and PEREGRINE D. H. et al. Violent breaking wave impacts. Part 1: Results from large-scale regular wave tests on vertical and sloping walls[J]. Coastal Engineering, 2007, 54(8): 602–617.

    Article  Google Scholar 

  2. FALTINSEN O. M., LANDRINI M. and GRECO M. Slamming in marine applications[J]. Journal of Engineering Mathematics, 2004, 48(3): 187–217.

    Article  Google Scholar 

  3. BREDMOSE H., PEREGRINE D. H. and BULLOCK G. N. Violent breaking wave impacts. Part 2: modelling the effect of air[J]. Journal of Fluid Mechanics, 2009, 641: 389–430.

    Article  MathSciNet  Google Scholar 

  4. SHAMS A., JALALISENDI M. and PORFIRI M. Experiments on the water entry of asymmetric wedges using particle image velocimetry[J]. Physics of Fluids, 2015, 27(2): 027103.

    Google Scholar 

  5. CUMMINS S. J., SILVESTER T. B. and CLEARY P. W. Three-dimensional wave impact on a rigid structure using smoothed particle hydrodynamics[J]. International Journal of Numerical Methods in Fluids, 2012, 68(12): 1471–1496.

    Article  MathSciNet  Google Scholar 

  6. KORSMEYER K. M. T., FEKKEN G. and VELDMAN A. E. P. et al. A volume-of-fluid based simulation method for wave impact problems[J]. Journal of Computational Physics, 2005, 206(1): 363–393.

    Article  MathSciNet  Google Scholar 

  7. KIM M.-H., YUE D. K. P. The complete second-order diffraction solution for an axisymmetric body. Part 1. Monochromatic incident waves[J]. Journal of Fluid Mechanics, 1989, 200: 235–264.

    Article  MathSciNet  Google Scholar 

  8. KIM M.-H., YUE D. K. P. The complete second-order diffraction solution for an axisymmetric body. Part 2. Bichromatic incident waves[J]. Journal of Fluid Mechanics, 1990, 211: 557–593.

    Article  MathSciNet  Google Scholar 

  9. MALENICA S., MOLIN B. Third harmonic wave diffraction by a vertical cylinder[J]. Journal of Fluid Mechanics, 1995, 302: 203–229.

    Article  MathSciNet  Google Scholar 

  10. SNEDDON I. N. Mixed boundary value problems in potential theory[M]. Amsterdam, The Netherlands: North Holland Publishing Company, 1966.

    MATH  Google Scholar 

  11. FABRIKANT V. I. Mixed boundary value problems of potential theory and their applications in engineering[M]. Dordrecht, The Netherlands: Kluwer Academic, 1991.

    MATH  Google Scholar 

  12. DUFFY D. J. Mixed boundary value problems[M]. London, UK: Chapman and Hall/CRC, 2008.

    Book  Google Scholar 

  13. COOKER M. J., PEREGRINE D. H. Pressure-impulse theory for liquid impact problems[J]. Journal of Fluid Mechanics, 1995, 297: 193–214.

    Article  MathSciNet  Google Scholar 

  14. PEREGRINE D. H. Water-wave impact on walls[J]. Annual Review of Fluid Mechanics, 2003, 35(1): 23–43.

    Article  MathSciNet  Google Scholar 

  15. KOROBKIN A. A., MALENICA S. Steep wave impact onto elastic wall[C]. Proceedings of the 22nd International Workshop on Water Waves and Floafing Bodies. Plitvice, Croatia, 2007.

    Google Scholar 

  16. IAFRATI A., KOROBKIN A. A. Breaking wave impact onto vertical wall[C]. Proceedings of the International Conference on Hydroelasticity in Marine Technology. Wuxi, China, 2006, 139–148.

    Google Scholar 

  17. COOKER M. J. A theory for the impact of a wave breaking onto a permeable barrier with jet generation[J]. Journal of Engineering Mathematics, 2013, 79: 1–12.

    Article  MathSciNet  Google Scholar 

  18. KOROBKIN A. A. Non-classical boundary conditions in water-impact problems[C]. IUTAM Symposium on Fluid Structure Interaction in Ocean Engineering. Hamburg, Germany, 2008, 167–178.

    Chapter  Google Scholar 

  19. WAGNER H. Über Stoss und Gleitvorgänge an der Oberfläche Von Flüssigkeiten[J]. ZAMM, 1932, 12: 193–215.

    Article  Google Scholar 

  20. SCOLAN Y.-M., KOROBKIN A. A. Three-dimensional theory of water impact. Part 1. Inverse Wagner problem[J]. Journal of Fluid Mechanics, 2001, 440: 293–326.

    Article  MathSciNet  Google Scholar 

  21. SCOLAN Y.-M., KOROBKIN A. A. Mixed boundary value problem in potential theory: Application to hydrodynamic impact (Wagner) problem[J]. Comptes Rendus Mécanique, 2012, 340(10): 702–705.

    Article  Google Scholar 

  22. KOROBKIN A. A., SCOLAN Y.-M. Three-dimensional theory of water impact. Part 2. Linearized Wagner problem[J]. Journal of Fluid Mechanics, 2006, 549: 343–373.

    Article  MathSciNet  Google Scholar 

  23. ABRAMOWITZ M., STEGUN I. A. Handbook of mathematical functions[M]. New York, USA: Dover Publications Inc., 1970.

    MATH  Google Scholar 

  24. COOKE J. C., TRANTER C. J. Dual Fourier-Bessel series[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1959, 12(3): 379–386.

    Article  MathSciNet  Google Scholar 

  25. TRANTER C. J. Dual trigonometrical series[J]. Glasgow Mathematical Journal, 1959, 4(2): 49–57.

    MathSciNet  MATH  Google Scholar 

  26. TRANTER C. J. A further note on dual trigonometrical series[J]. Glasgow Mathematical Journal, 1960, 4(4): 198–200.

    MathSciNet  MATH  Google Scholar 

  27. TRANTER C. J. An improved method for dual trigonometrical series[J]. Glasgow Mathematical Journal, 1964, 6(3): 136–140.

    MathSciNet  MATH  Google Scholar 

  28. GRADSHTEYN I. S., RYZHIK I. M. Table of integrals, series and products[M]. Seventh Edition, London, UK: Elsevier Academic Press, 2007.

    MATH  Google Scholar 

  29. WATSON G. N. A treatise on the theory of bessel functions[M]. Cambridge, UK: Cambridge University Press, 1944.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Chatjigeorgiou.

Additional information

Biography: Ioannis K. CHATJIGEORGIOU (1966-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatjigeorgiou, I.K., Korobkin, A.A. & Cooker, M.J. Three-dimensional steep wave impact on a vertical cylinder. J Hydrodyn 28, 523–533 (2016). https://doi.org/10.1016/S1001-6058(16)60657-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60657-1

Key words

Navigation