Skip to main content
Log in

A New Wake Oscillator Model for Predicting Vortex Induced Vibration of a Circular Cylinder

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator model results. Good agreement with experimental results is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(4): 389–447.

    Article  Google Scholar 

  2. GABBAI R. D., BENAROYA H. An overview of modeling and experiments of vortex -induced vibration of circular cylinders[J]. Journal of Sound and Vibration, 2005, 282: 575–616.

    Google Scholar 

  3. Williamson C. H. K., GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind engineering and industrial Aerodynamics, 2008, 96(6–7): 713–735.

    Article  Google Scholar 

  4. NEWMAND J., KARNIADAKISG E. A direct numerical simulation study of flow past a freely vibrating cable[J]. Journal of Fluid Mechanics, l997, 344: 95–136.

  5. SHA Yong, WANG Yong-xue. Vortex induced vibrations of finned cylinders[J]. Journal of Hydrodynamics, 2008, 20(2): 195–201.

    Article  Google Scholar 

  6. SKOP R. A., BALASUBRAMANIAN S. A new twist on an old model for vortex-excited vibrations[J]. Journal of Fluids and Structures, 1997, 11(4): 395–412.

    Article  Google Scholar 

  7. SKOP R. A., LUO G. An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and nonuniform flows[J]. Journal of Fluids and Structures, 2001,15(6): 867–884.

    Article  Google Scholar 

  8. KRENK S., NIELSEN S. R. K. Energy balanced double oscillator model for vortex-induced vibrations[J]. ASCE Journal of Engineering Mechanics, 1999, 125(3): 263–271.

    Article  Google Scholar 

  9. PLASCHKO P. Global chaos in flow-induced oscillations of cylinders[J]. Journal of Fluids and Structures, 2000, 14(6): 883–893.

    Article  Google Scholar 

  10. FACCHINETTI M. L., DE LANGRE E. and BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004,19(2): 123–140.

    Article  Google Scholar 

  11. FACCHINETTI M. L, DE LANGRE E. and BIOLLEY F. Vortex-induced travelling waves along a cable[J]. European Journal of Mechanics B/Fluids, 2004, 23(1): 199–208.

    Article  Google Scholar 

  12. MATHELIN L., DE LANGRE E. Vortex-induced vibrations and waves under shear flow with a wake oscillator model[J]. European Journal of Mechanics B/Fluids, 2005, 24(4): 478–490.

    Article  MathSciNet  Google Scholar 

  13. VIOLETTE R., DE LANGRE E. and SZYDLOWSKI J. Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments[J]. Computers and Structures, 2007, 85(11–14): 1134–1141.

    Article  Google Scholar 

  14. LIN Li-ming, LING Guo-can and WU Ying-xiang et al. Nonlinear fluid damping in structure-wake oscillators in modeling vortex-induced vibrations[J]. Journal of Hydrodynamics, 2009, 21(1): 1–11.

    Article  Google Scholar 

  15. KHALAK A., WILLIAMSON C. H. K. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69–71: 341–350.

    Article  Google Scholar 

  16. GOVARDHAN R., WILLIAMSON C. H. K. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420: 85–130.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-hai Xu.

Additional information

Project supported by the National High Technology Research and Development Program of China (863 Program, Grant No. 2006AA09Z350), the National Natural Science Foundation of China (Grant No.10702073) and the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-L02).

Biography: XU Wan-hai (1981-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Wh., Wu, Yx., Zeng, Xh. et al. A New Wake Oscillator Model for Predicting Vortex Induced Vibration of a Circular Cylinder. J Hydrodyn 22, 381–386 (2010). https://doi.org/10.1016/S1001-6058(09)60068-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(09)60068-8

Key words

Navigation