Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T18:51:52.177Z Has data issue: false hasContentIssue false

The CCK-A receptor gene possibly associated with auditory hallucinations in schizophrenia

Published online by Cambridge University Press:  16 April 2020

J. Wei
Affiliation:
Institute of Biological Psychiatry, Schizophrenia Association Great Britain, Bryn Hyfryd, The Crescent Bangor GwyneddLL57 2AG, UK
G.P. Hemmings
Affiliation:
Institute of Biological Psychiatry, Schizophrenia Association Great Britain, Bryn Hyfryd, The Crescent Bangor GwyneddLL57 2AG, UK
Get access

Summary

In this study, a PstI polymorphic site with two individual alleles, namely A1 and A2, was identified within the boundary between intron 1 and exon 2 of the cholecystokinin (CCK) type A receptor gene. The PstI polymorphic site was used as a genetic marker to study its association with psychotic symptoms in schizophrenia. A significant difference in allelic frequency was found between schizophrenic patients with and without auditory hallucinations (χ2 = 6.26, df = 1, P = 0.012), and the odds ratio for the allelic association was 2.21 (95% CI 1.18–4.15) with an attributable fraction of 0.1. The frequency of A1-A1 and A1-A2 genotypes showed a significant excess in schizophrenic patients with auditory hallucinations as compared to those without such symptoms (χ2 = 5.45, df = 1, P = 0.02), and the odds ratio for the genotypic association was 2.27 (95% CI 1.13–4.57) with an attributable fraction of 0.177. The haplotype-based haplotype relative risk (HHRR) test revealed a significant difference between transmitted and non-transmitted alleles in nuclear families of schizophrenic patients with auditory hallucinations (χ2 = 4.54, df = 1,P = 0.033) but not in those of schizophrenic patients without them. The present study suggests that the CCK-A receptor gene may be associated with auditory hallucinations in schizophrenia.

Type
Original articles
Copyright
Copyright © Elsevier, Paris 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albus, MVonGellhorn, KMünch, UNaber, DAckenheil, MA. Double-blind study with ceruletide in chronic schizophrenic patients : biochemical and clinical results. Psychiatr Res 1986; 19 : 17.CrossRefGoogle ScholarPubMed
Andreasen, NCFlaum, MSwayze, VWTyrrell, G.Arndt, S. Positive and negative symptoms in schizophrenia: a critical reappraisal. Arch Gen Psychiatr 1990 ; 47 : 615621.CrossRefGoogle ScholarPubMed
Arinami, TItokawa, MEnguchi, HTagaya, HYano, SShimizu, Het alAssociation of dopamine D2 receptor molecular variant with schizophrenia. Lancet 1994 ; 343 : 703704.CrossRefGoogle ScholarPubMed
Bachus, S.E.Hyde, TMHerman, MMEgan, MFKleinman, JE. Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. J Psychiatr Res 1997 ; 31 : 233256.CrossRefGoogle ScholarPubMed
Cardno, AGMcGuffin, P. The molecular genetics of schizophrenia. Neuropathol Appl Neurobiol 1994 ; 20 : 344349.CrossRefGoogle ScholarPubMed
Crawley, JN. Choecystokinin-dopamine interactions. Trends Pharmacol Sci 1991 ; 12 : 232236.CrossRefGoogle ScholarPubMed
Deleon, JCuesta, MJPeralta, V. Delusions and hallucinations in schizophrenic patients. Psychopathology 1993 ; 26 : 286291.10.1159/000284835CrossRefGoogle Scholar
Ekblom, GHHallman, J.Oreland, J. Platelet monoamine oxidase activity in relation to alleles of dopamine D4 receptor and tyrosine hydroxylase genes. Acta Psychiatr Scand 1997 ; 96 : 295300.Google Scholar
Hillman, H. A study of 131 patients with schizophrenia and provision for them Int J Health Care Quality Assurance 1998 ; 11 : 102112.10.1108/09526869810213046CrossRefGoogle Scholar
Gariano, RFGroves, PM. A mechanism for the involvement of co—localized neuropeptides in the action of antipsychotic drugs. Biol Psychiatry 1989 ; 26 : 303314.CrossRefGoogle Scholar
Inoue, HIannotti, CAWelling, CMVeile, RDonis-Keller, HPermutt, MA. Human cholecystokinin type A receptor gene: cytogenetic localization, physical mapping, and identification of two missense variants in patients with obesity and non-insulin-dependent diabetes mellitus (NIDDM). Genomics 1997 ; 42 : 331335.CrossRefGoogle ScholarPubMed
Jönsson, EBrene, SGeijer, THTerenius, LTylec, APersson, MLet alA search for association between schizophrenia and dopamine–related alleles. Eur Arch Psychiatr Clin Neurosci 1996 ; 246 : 297304.10.1007/BF02189022CrossRefGoogle ScholarPubMed
Kalivas, PW. Interactions between neuropeptides and dopamine neurones in the ventromedial mesencephalon. Neurosci Biobehav Rev 1985 ; 94 : 573587.CrossRefGoogle Scholar
Karayiorgou, MGogos, JA. A turning point in schizophrenia genetics. Neuron 1997 ; 19 : 967979.CrossRefGoogle ScholarPubMed
Nair, NPVLal, SBloom, DM. Cholecystokinin peptides, dopamine and schizophrenia — A review. Prog Neuro-Psychopharmacol Biol Psychiatry 1985 ; 9 : 515524.10.1016/0278-5846(85)90011-9CrossRefGoogle ScholarPubMed
Nair, NPVLal, SBloom, DM. Cholecystokinin and schizophrenia. Prog Brain Res 1986 ; 65 : 237258.CrossRefGoogle Scholar
Nemeroff, CB. Neuropeptides and schizophrenia: a critical reviewIn: Tamminga, CASchulz, SC eds. Advances in Neuropsychiatry and Psychopharmacology Vol I. New York: Raven Press; 1991. p. 7789.Google Scholar
Plomin, ROwen, MJMcGuffin, P. The genetic basis of complex human behaviors Science 1994 ; 264 : 17731779.CrossRefGoogle ScholarPubMed
Rasmussen, KStockton, MECzachura, JFHowbert, JJ. Cholecystokinin (CCK) and schizophrenia: the selective CCKB antagonist LY262691 decreases midbrain dopine unit activity. Eur J Pharmacol 1991 ; 209 : 135138.10.1016/0014-2999(91)90025-LCrossRefGoogle ScholarPubMed
Song, IBrown, DRWiltshire, RNGantz, ITrent, JMYamada, T. The human gastrin/cholecystokinin type B receptor gene alternative splice donor site in exon 4 generates two variant mRNAs. Proc Natl Acad Sci USA 1993 ; 90 : 90859089.CrossRefGoogle ScholarPubMed
Terwilliger, JDOtt, J. A haplotype—based ‘haplotype relative risk’ approach to detecting allelic associations. Hum Hered 1992 ; 42 : 337346.CrossRefGoogle ScholarPubMed
Tsuang, MTFaraone, SV. The case for heterogeneity in the etiology of schizophrenia. Schizophr Res 1995 ; 17 : 161175.CrossRefGoogle ScholarPubMed
Virgo, LHumphries, CMortimer, ABarnes, THirsch, SDeBelleroche, J. Cholecystokinin messenger RNA deficit in frontal and temporal cerebral cortex in schizophrenia. Biol Psychiatry 1995 ; 37 : 694701.CrossRefGoogle Scholar
Wank, SA. Cholecystokinin receptors. Am J Physiol 1995 ; 269 : G628646.Google ScholarPubMed
Williams, NMCardno, AGMurphy, KCJones, LAAsherson, PMcGuffin, Pet alAssociation between schizophrenia and microsatellite polymorphism at the dopamine D5 receptor gene. Psychiatr Genet 1997 ; 7 : 8385.10.1097/00041444-199722000-00005CrossRefGoogle ScholarPubMed
Woolf, B. On estimating the relation between blood group and disease. Ann Hum Genet 1955 ; 19 : 251253.10.1111/j.1469-1809.1955.tb01348.xCrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.