Proteómica y enfermedad cardiovascularProteomics and Cardiovascular Disease

https://doi.org/10.1016/S0300-8932(03)76865-1Get rights and content

Con la descripción del genoma humano se ha abierto una nueva manera de estudiar y entender los fenómenos fisiopatológicos. El siglo XX nos permitió conocer multitud de componentes de la célula de modo individual. Sin embargo, el siglo XXI se inicia con un análisis global de los componentes celulares. Gracias al desarrollo de diversas tecnologías, como los chips de ADN, o la electroforesis bidimensional, entre otros, ahora puede estudiarse la expresión de miles de genes, o de las proteínas que codifican, en pocas horas.

Además, la genómica ha dado paso a la proteómica. La mera enumeración de los genes no informa de las funciones celulares, pues ninguna célula los expresa todos simultáneamente, sino que, dependiendo del tipo celular y de los estímulos que reciba, expresará una parte variable de su genoma. El resultado será el proteoma, es decir, un conjunto de proteínas que sí son las responsables de las funciones celulares en cada momento, y que es el objeto de estudio de la proteómica.

En proteómica cardiovascular ha comenzado a describirse el proteoma de las células cardíacas y algunas proteínas nuevas, no identificadas previamente, que están alteradas en distintas miocardiopatías. Estas proteínas están implicadas en la producción de energía, en respuesta al estrés, o pertenecen al proteasoma o al citoesqueleto y pueden ser potenciales marcadores de riesgo y constituir nuevas dianas terapeúticas en el futuro. La quimiogenómica aparece como una reciente metodología que posibilita generar nuevos fármacos a partir de los datos genómicos y proteómicos.

The description of the human genome has opened new venues for the study and understanding of pathophysio-logical phenomena. In the 20th century, individual cell components were studied. The 21st century began with a global analysis of cell components. Thanks to the development of new technologies such as DNA chips, or two-dimensional electrophoresis, we can now study the expression of thousands of genes, or the proteins they encode, in a few hours.

Genomics has opened the way for proteomics. Improved knowledge of genes does not provide information about cell functions, because any cell expresses all genes simultaneously. Instead, there is selective gene expression depending on the cell type and the stimuli to which it is exposed. The result of this is the proteome, an ensemble of proteins that are responsible for cell functions at any given moment, which are the object of the study of proteomics.

The description of the proteome of cardiac cells has begun and some new proteins have been found to be dysregulated in different cardiomyopathies. These proteins are involved either in energy production or in the stress response, or belong to the cell proteasome or cytoskeleton. They may be potential risk markers or new therapeutic targets in the future. In this sense, chemogenomics is a new methodology for the development of new drugs using genomic and proteomic data.

Bibliografía (97)

  • A. Rojas Martínez et al.

    Genética y medicina molecular en cardiología

    Rev Esp Cardiol

    (2001)
  • M.A. Moseley

    Current trends in differential expression proteomics: isotopically coded tags

    Trends Biotechnol

    (2001)
  • J.G. Seidman et al.

    The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms

    Cell

    (2001)
  • D. Franco et al.

    Regulación de la expresión génica en el miocardio durante el desarrollo cardíaco

    Rev Esp Cardiol

    (2002)
  • F. Dalloz et al.

    Modelos animales genéticamnte modificados en investigación cardiovascular

    Rev Esp Cardiol

    (2001)
  • C.K. Damer et al.

    Rapid identification of protein phosphatase 1 binding proteins by mixed peptide sequencing and data base searching

    J Biol Chem

    (1998)
  • J. Martínez-González et al.

    Biología celular y molecular de las lesiones ateroscleróticas

    Rev Esp Cardiol

    (2001)
  • M. Smolka et al.

    Optimization of the isotope coded affinity tag labeling procedure for quantitative proteome analysis

    Anal Biochem

    (2001)
  • D. Hwang et al.

    Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags

    Genomics

    (2000)
  • A. Pandey et al.

    Proteomics to study genes and genomes

    Nature

    (2000)
  • K.L. Williams

    Genomes and Proteomes: towards a multidimensional view of biology

    Electrophoresis

    (1999)
  • S. Naaby-Hansen et al.

    Proteomics: post-genomic cartography to understand gene function

    Trends Pharm Sci

    (2001)
  • F. Collins et al.

    DNA microarrays

    Nature Genetics

    (1999)
  • D.C. Liebler
  • S.P. Gygi

    Correlation between protein and mRNA abundance in yeast

    Moll Cell Biol

    (1999)
  • A. Abbott

    A post-genomic challenge: learning to read patterns of protein synthesis

    Nature

    (1999)
  • R.T. Lee

    Fuctional genomics and cardiovascular drug discovery

    Circulation

    (2001)
  • K. Williams et al.

    Introduction to the Proteome

  • A. Gorg et al.

    The current state of two-dimensional electrophoresis with immobilized pH gradients

    Electrophoresis

    (2000)
  • D. Figeys et al.

    High sensitivity analysis of proteins and peptides by capillary electrophoresis-tandem mass spectrometry: recent developments in technology and applications

    Electrophoresis

    (1998)
  • M. Mann et al.

    Analysis of proteins and proteomes by mass spectrometry

    Annu Rev Biochem

    (2001)
  • J. Klose

    Large-gel 2-D electrophoresis

    Meth Mol Biol

    (1999)
  • D. Stahl et al.

    Data controlled microscale liquid chromatography-tandem mass spectrometry of peptides and proteins: strategies for improved sensitivity, efficiency and effectiveness

  • B. Spangler

    The basics of matrix-assisted laser desorption, ionisation time of flight mass spectrometry and post-source decay analysis

  • P. Dainese et al.

    Protein identification by peptide mass fingerprinting

  • A.P. Jonssons

    Mass spectrometry for protein and peptide characterization

    Cell Mol Life Sci

    (2001)
  • M. Larsen et al.

    Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis

    Anal Chem

    (2000)
  • W. Griffiths et al.

    Electrospray and tandem mass spectrometry in biochemistry

    Biochem J

    (2001)
  • M. Kinter et al.

    Protein sequencing and identification using tandem mass spectrometry

    (2000)
  • K. Arrel et al.

    Cardiovascular proteomics. Evolution and Potential

    Circ Res

    (2001)
  • J.M. Corbett et al.

    Coelectrophoresis of cardiac tissue from human, dog, rat and mouse. Towards the establishment of an integrated two-dimensional protein database

    Electrophoresis

    (1995)
  • K.P. Pleiâner et al.

    Towards design and comparison of World Wide Web accesible myocardial two-dimensional gel electrophoresis protein data bases

    Electrophoresis

    (1997)
  • X.P. Li et al.

    A two-dimensional electrophoresis database of rat heart proteins

    Electrophoresis

    (1999)
  • G. Evans et al.

    Construction of HSC-2DPAGE: a two-dimensional gel electrophoresis database of heart proteins

    Electrophoresis

    (1997)
  • S. Baker C et al.

    A human myocardial two-dimensional electrophoresis database: protein characterisation by microsequencing and immunoblotting

    Electrophoresis

    (1992)
  • J.M. Corbett et al.

    The human myocardial two-dimensional gel protein database: update

    Electrophoresis

    (1994)
  • P. Jungblut et al.

    Protein composition of the human heart: the construction of a myocardial two-dimensional electrophoresis database

    Electrophoresis

    (1994)
  • E. Müller et al.

    High-performance human myocar-dial two-dimensional electrophoresis database: edition 1996

    Electrophoresis

    (1996)
  • Cited by (16)

    • Proteomic Strategies in the Search of New Biomarkers in Atherothrombosis

      2010, Journal of the American College of Cardiology
      Citation Excerpt :

      Figure 3shows an overview of proteomic approaches. A thorough description of proteomic techniques is beyond the scope of this review and may be found in references (2,3,11–13). However, we will focus on the design of studies using proteomic approaches.

    • Potentials of phenolic molecules of natural origin and their derivatives as anti-HIV agents

      2007, Biotechnology Annual Review
      Citation Excerpt :

      By integrating all the available information within a protein family (sequence, structure–function relationship data, protein structure, etc.), chemogenomics can efficiently enable cross-SAR exploitation, that express early compound selection and discovery of best selectivity panel members [92]. In recent years numerous significant discoveries and advancements have been done on chemogenomics, which results large number of very informative review papers on these technologies, those are explaining different approaches utilized in chemogenomics, their appliances in drug discovery, etc., counting several real-life examples captivating quite a lot of biomolecular targets [92–125]. The spectacular amplification in the amount of data from protein structural biology has been obscured by the publicity surrounding the Human Genome Project [126].

    View all citing articles on Scopus
    View full text