Skip to main content
Log in

Optimal scheduling of radiotherapy and angiogenic inhibitors

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We incorporate a previously validated mathematical model of a vascularized tumor into an optimal control problem to determine the temporal scheduling of radiotherapy and angiogenic inhibitors that maximizes the control of a primary tumor. Our results reveal that optimal antiangiogenic monotherapy gives a large initial injection to attain a 20: 1 ratio of tumor cell volume to supporting vasculature volume. It thereafter maintains this 20: 1 ratio via a continuous dose rate that is intensified over time. The optimal radiation monotherapy schedule is characterized by amodest dose intensification over time. The best performance is achieved by our optimal combination regimen, where the antiangiogenic treatment again maintains a constant tumor-to-vasculature ratio, but is administered in a dose-intensified manner only during the latter portion of the radiation fractionation schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barendsen, G. W. (1982). Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int. J. Radiat. Oncol. Biol. Phys. 8, 1981–1997.

    Google Scholar 

  • Bertrand, O. F., R. Mongrain, E. Thorin and S. Lehnert (2000). In vitro response of human and porcine vascular cells exposed to high dose-rate γ-irradiation. Int. J. Radiat. Biol. 76, 999–1007.

    Article  Google Scholar 

  • Brenner, D. J., E. J. Hall, Y. Huang and R. K. Sachs (1994). Optimizing the time course of brachytherapy and other accelerated radiotherapeutic protocols. Int. J. Radiat. Oncol. Biol. Phys. 29, 893–901.

    Google Scholar 

  • Browder, T., C. E. Butterfield, B. M. Kräling, B. Shi, B. Marshall, M. S. O’Reilly and J. Folkman (2000). Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886.

    Google Scholar 

  • Bryson, A. E. Jr. and Y.-C. Ho (1975). Applied Optimal Control, New York: John Wiley and Sons.

    Google Scholar 

  • Burton, A. C. (1966). Rate of growth of solid tumors as a problem of diffusion. Growth 30, 157–176.

    Google Scholar 

  • Conger, A. D. and M. C. Ziskin (1983). Growth of mammalian multicellular tumor spheroids. Cancer Res. 43, 556–560.

    Google Scholar 

  • Dibrov, B. F., A. M. Zhabotinsky, Yu. A. Neyfakh, M. P. Orlova and L. I. Churikova (1983). Optimal scheduling for cell synchronization by cycle-phase-specific blockers. Math. Biosci. 66, 167–185.

    Article  MATH  Google Scholar 

  • Dibrov, B. F., A. M. Zhabotinsky, Yu. A. Neyfakh, M. P. Orlova and L. I. Churikova (1985). Mathematical model of cancer chemotherapy: periodic schedules of phase-specific cytotoxic-agent administration increasing the selectivity of therapy. Math. Biosci. 73, 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186.

    Article  Google Scholar 

  • Folkman, J. (2000). Cancer Medicine, 5th edn., J. F. Holland and E. Frei (Eds), Hamilton, London: B. C. Decker Inc., pp. 132–152.

    Google Scholar 

  • Fowler, J. F. (1989). The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 62, 679–694.

    Article  Google Scholar 

  • Gorski, D. H. et al. (1999). Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 59, 3374–3378.

    Google Scholar 

  • Gorski, D. H., H. J. Mauceri, R. M. Salloum, S. Gately, S. Hellman, M. A. Beckett, V. P. Sukhatme, G. A. Soff, D. W. Kufe and R. R. Weichselbaum (1998). Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res. 58, 5686–5689.

    Google Scholar 

  • Griscelli, F. et al. (2000). Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model. PNAS 97, 6698–6703.

    Article  Google Scholar 

  • Hahnfeldt, P., D. Panigraphy, J. Folkman and L. Hlatky (1999). Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775.

    Google Scholar 

  • Hanahan, D. and J. Folkman (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.

    Article  Google Scholar 

  • Harrison, J. M. (1985). Brownian Motion and Stochastic Flow Systems, New York: John Wiley and Sons.

    MATH  Google Scholar 

  • Joki, T., M. Machluf, A. Atala, J. Zhu, N. T. Seyfried, I. F. Dunn, T. Abe, R. S. Carroll and P. M. Black (2001). Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat. Biotechnol. 19, 35–39.

    Article  Google Scholar 

  • Kisker, O. et al. (2001). Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 61, 7669–7674.

    Google Scholar 

  • Luus, R. (2000). Iterative Dynamic Programming, Boca Raton, Florida: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Mauceri, H. J. et al. (1998). Combined effects of angiostatin and ionizing radiation in antitumor therapy. Nature 394, 287–291.

    Article  Google Scholar 

  • Norton, L. and R. Simon (1977). Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317.

    Google Scholar 

  • Norton, L. and R. Simon (1986). The Norton-Simon hypothesis revisited. Cancer Treat. Rep. 70, 163–169.

    Google Scholar 

  • O’Donoghue, J. A., M. Bardies and T. E. Wheldon (1995). Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J. Nuclear Med. 36, 1902–1909.

    Google Scholar 

  • O’Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W.S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen and J. Folkman (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    Article  Google Scholar 

  • O’Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. H. Sage and J. Folkman (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.

    Article  Google Scholar 

  • Pappova, N., E. Siracka, A. Vacek and J. Durkovsky (1982). Oxygen tension and prediction of the radiation response: polarographic study in human breast cancer. Neoplasma 29, 669–674.

    Google Scholar 

  • Read, T. A., D. R. Sorenson, R. Mahesparan, P. O. Enger, R. Timpl, B. R. Olsen, M. H. B. Hjelsteun, O. Haraldseth and R. Bjerkvig (2001). Local endostatin treatment of glioma administered by microencapsulated producer cells. Nat. Biotechnol. 19, 29–34.

    Article  Google Scholar 

  • Sachs, R. K., P. Hahnfeld and D. J. Brenner (1997). The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int. J. Radiat. Biol. 72, 351–374.

    Article  Google Scholar 

  • Skehan, P. (1986). On the normality of growth dynamics of neoplasms in vivo: a data base analysis. Growth 50, 496–515.

    Google Scholar 

  • Skipper, H. E., F. M. Schabel Jr. and W. S. Wilcox (1964). Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with ‘curability’ of experimental leukemia. Cancer Chemother. Rep. 35, 1–111.

    Google Scholar 

  • Spratt, J. S., J. S. Meyer and J. A. Spratt (1996). Rates of growth of human neoplasms: part II. J. Surg. Oncol. 61, 68–83.

    Google Scholar 

  • Thames, H. D. and J. H. Hendry (1987). Fractionation in Radiotherapy, London: Taylor & Francis.

    Google Scholar 

  • Tucker, S. L. and J. M. G. Taylor (1996). Improved models of tumor cure. Int. J. Radiat. Oncol. Biol. Phys. 70, 539–553.

    Google Scholar 

  • US National Cancer Institute, Cancer trials web site: http://cancertrials.nci.nih.gov/news/angio/angiomore.html.

  • van Putten, L. M. and R. F. Kallmann (1968). Oxygenation status of a transplantable tumor during fractionated radiation therapy. J. Natl. Cancer Inst. 40, 441–451.

    Google Scholar 

  • Vanselow, B., M. J. Eble, V. Rudat, P. Wollensack, C. Conradt and A. Dietz (2000). Oxygenation of advanced head and neck cancer: prognostic marker for the response to primary radiochemotherapy. Otolaryngol. Head Neck Surg. 122, 856–862.

    Google Scholar 

  • Vaupel, P., F. Kallinowski and P. Okunieff (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465.

    Google Scholar 

  • Vensim standard professional DSS, Ventana Systems Inc, 1988

  • Weidner, N., J. P. Semple, W. R. Welch and J. Folkman (1991). Tumor angiogenesis and metastasis—corrolation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.

    Article  Google Scholar 

  • Wein, L. M., J. E. Cohen and J. T. Wu (2000). Dynamic optimization of a linear-quadratic model with incomplete repair and volume-dependent sensitivity and repopulation. Int. J. Radiat. Oncol. Biol. Phys. 47, 1073–1083.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence M. Wein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ergun, A., Camphausen, K. & Wein, L.M. Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull. Math. Biol. 65, 407–424 (2003). https://doi.org/10.1016/S0092-8240(03)00006-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00006-5

Keywords

Navigation