Skip to main content
Log in

Multiple attractors in stage-structured population models with birth pulses

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In most models of population dynamics, increases in population due to birth are assumed to be time-independent, but many species reproduce only during a single period of the year. A single species stage-structured model with density-dependent maturation rate and birth pulse is formulated. Using the discrete dynamical system determined by its Poincaré map, we report a detailed study of the various dynamics, including (a) existence and stability of nonnegative equilibria, (b) nonunique dynamics, meaning that several attractors coexist, (c) basins of attraction (defined as the set of the initial conditions leading to a certain type of attractor), (d) supertransients, and (e) chaotic attractors. The occurrence of these complex dynamic behaviour is related to the fact that minor changes in parameter or initial values can strikingly change the dynamic behaviours of system. Further, it is shown that periodic birth pulse, in effect, provides a natural period or cyclicity that allows multiple oscillatory solutions in the continuous dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz, M. and I. Stegun (1965). Handbook of Mathematical Functions With Formals, Graphs, and Mathematical Tables, New York: Dover Publications Inc.

    Google Scholar 

  • Aiello, W. G. and H. I. Freedman (1990). A time delay model of single-species growth with stage structure. Math. Biosci. 101, 139–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Bergh, O. and W. M. Getz (1988). Stability of discrete age-structured and aggregated delay-difference population models. J. Math. Biol. 26, 551–581.

    Article  MathSciNet  MATH  Google Scholar 

  • Bernard, O. and J. L. Gouzé (1995). Transient behavior of biological loop models, with application to the droop model. Math. Biosci. 127, 19–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Bernard, O. and S. Souissi (1998). Qualitative behavior of stage-structure populations: application to structure validation. J. Math. Biol. 37, 291–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Caswell, H. (1989). Matrix Population Models, Construction, Analysis and Interpretation, Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Cushing, J. M. (1987). Equilibria and oscillations in age-structured population growth models, in Mathematical Modelling of Environmental and Ecological System, J. B. Shukla, T. G. Hallam and V. Capasso (Eds), New York: Elsevier, pp. 153–175.

    Google Scholar 

  • Cushing, J. M. (1998). An introduction to structured population dynamics. CBMS-NSF Reg. Conf. Ser. Appl. Math. 71, 1–10.

    MathSciNet  Google Scholar 

  • Ebenman, B. and L. Persson (1988). Size-structured Populations: Ecology and Evolution, Berlin: Springer.

    MATH  Google Scholar 

  • Gavrilefts, S. and A. Hastings (1995). Intermittency and transient chaos from simple frequency-dependent selection. Proc. R. Soc. Lond. B 261, 233–238.

    Google Scholar 

  • Gazis, D. C., E. W. Montroll and J. E. Ryniker (1973). Age-specific, deterministic model of predator-prey populations: application to isle royale. IBM J. Res. Dev. 17, 47–59.

    Article  Google Scholar 

  • Grebogy, C., E. Ott and J. A. Yorke (1983). Crisis, sudden changes in chaotic attractors, and chaotic transients. Physica D 7, 181–200.

    Article  MathSciNet  Google Scholar 

  • Gurney, W. S. C., R. M. Nisbet and J. L. Lawton (1983). The systematic formulation of tractable single-species population models incorporating age-structure. J. Anim. Ecol. 52, 479–495.

    Google Scholar 

  • Gurtin, M. E. and R. C. MacCamy (1974). Nonlinear age-dependent population dynamics. Arch. Rat. Mech. Anal. 54, 281–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, A. (1983). Age-dependent predation is not a simple process, I, continuous time models. Theor. Popul. Biol. 23, 347–362.

    Article  MATH  MathSciNet  Google Scholar 

  • Hastings, A. (1984). Delay in recruitment at different trophic levels: effects on stability. J. Math. Biol. 21, 35–44.

    MATH  MathSciNet  Google Scholar 

  • Hastings, A. and K. Higgins (1994). Persistence of transients in spatially structured ecological models. Science 263, 1133–1137.

    Google Scholar 

  • Henson, S. M. et al. (1999). Multiple attractors, saddles, and population dynamics in periodic habitats. Bull. Math. Biol. 61, 1121–1149.

    Article  Google Scholar 

  • Higgins, K., A. Hastings and L. Botsford (1997). Density dependence and age structure: nonlinear dynamics and population behavior. Am. Nat. 149, 247–269.

    Article  Google Scholar 

  • Jury, E. I. (1974). Inners and Stability of Dynamic Systems, New York: Wiley.

    MATH  Google Scholar 

  • Kostora, T., J. Li and M. Friedman (1999). Two models for competition between age classes. Math. Biosci. 157, 65–89.

    Article  MathSciNet  Google Scholar 

  • Levin, S. A. (1981). Age-structure and stability in multiple-age spawning populations, in Lecture Notes in Biomathematics 40, T. L. Vincent and J. M. Skowrinski (Eds), Berlin, Heidelberg and New York: Springer, pp. 21–45.

    Google Scholar 

  • Levin, S. A. and C. P. Goodyear (1980). Analysis of an age-structured fishery model. J. Math. Biol. 9, 245–274.

    Article  MathSciNet  MATH  Google Scholar 

  • May, R. M. (1977). Thresholds and breakpoints in ecosystems with a multiplicity of states. Nature 269, 471–477.

    Article  Google Scholar 

  • Metz, J. A. J. and O. Diekmann (1986). The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics 68, Berlin, Heidelberg, New York: Springer.

    MATH  Google Scholar 

  • Nicholson, N. J. (1954). An outline of the dynamics of animal populations. Aust. J. Zool. 2, 9–65.

    Article  Google Scholar 

  • Nicholson, A. J. (1957). The self adjustment of populations to change. Cold Spring Harb. Symp. Quant. Biol. 22, 153–173.

    Google Scholar 

  • Petraitis, P. S. and R. E. Latham (1999). The importance of scale in testing the origins of alternative community states. Ecology 80, 429–442.

    Article  Google Scholar 

  • Tang, S. Y. and L. S. Chen (2002). Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol. 64, 169–184.

    MathSciNet  Google Scholar 

  • Van Den Bosch, F. and W. Gabriel (1997). Cannibalism in age-structured populations. Theor. Popul. Biol. 59, 551–573.

    MATH  Google Scholar 

  • Weeb, G. F. (1985). Theory of Age Dependent Population Dynamics, New York: Marcel Dekker.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyi Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, S., Chen, L. Multiple attractors in stage-structured population models with birth pulses. Bull. Math. Biol. 65, 479–495 (2003). https://doi.org/10.1016/S0092-8240(03)00005-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00005-3

Keywords

Navigation