Water exchange on metal ions: experiments and simulations

https://doi.org/10.1016/S0010-8545(99)90232-1Get rights and content

Abstract

The water exchange reaction between coordination shells around metal ions in aqueous solution is a fundamental reaction in understanding the reactivity of these ions in chemical and biological systems. The results reviewed in this paper demonstrate the complementary of experimental studies and computer simulations or quantum chemical calculations performed on such systems. Due to the large range of exchange rate constants, a variety of experimental and different computer techniques have to be applied. Very fast exchange reactions between first and second coordination shell and between second shell and bulk solvent can be simulated by classical molecular dynamics technique. Reaction pathways for water exchange on metal ions with a less labile first coordination shell can be followed by calculation of clearly defined transition states. Success and shortcomings of the techniques are discussed by means of recent publications.

References (105)

  • S.F. Lincoln et al.

    Adv. Inorg. Chem.

    (1995)
  • R.J. Cross

    Adv. Inorg. Chem.

    (1989)
  • D. Marx et al.

    Chem. Phys. Lett.

    (1997)
  • W. Bol et al.

    Chem. Phys. Lett.

    (1977)
  • R. Caminiti et al.

    Chem. Phys. Lett.

    (1981)
  • W. Bol et al.

    Chem. Phys. Lett.

    (1977)
  • D.T. Richens

    The Chemistry of Aqua Ions

    (1997)
  • A. Cusanelli et al.

    J. Am. Chem. Soc.

    (1996)
  • H. Ohtaki et al.

    Chem. Rev.

    (1993)
  • P. Smirnov et al.

    J. Phys. Chem. B

    (1998)
  • A.E. Merbach et al.

    NMR Basic Princ. Prog.

    (1990)
  • U. Frey et al.
  • M. Eigen

    Pure Appl. Chem.

    (1963)
  • R. Car et al.

    Phys. Rev. Lett.

    (1985)
  • P. Caravan et al.

    Chem. Commun.

    (1997)
  • C.H. Langford et al.

    Ligand Substitution Processes

    (1965)
  • A.E. Merbach

    Pure Appl. Chem.

    (1982)
  • A.E. Merbach

    Pure Appl. Chem.

    (1987)
  • T.W. Swaddle

    Commun. Inorg. Chem.

    (1991)
  • R.E. Connick et al.

    J. Phys. Chem.

    (1983)
  • R. van Eldik

    Inorganic High Pressure Chemistry: Kinetics and Mechanisms

    (1986)
  • R. van Eldik

    Pure Appl. Chem.

    (1992)
  • R. van Eldik et al.

    Commun. Inorg. Chem.

    (1992)
  • T.W. Swaddle et al.

    Can. J. Chem.

    (1983)
  • T.W. Swaddle

    Adv. Inorg. Bioinorg. Mech.

    (1983)
  • F.K. Meyer et al.

    J. Am. Chem. Soc.

    (1979)
  • B.M. Rode et al.

    J. Chem. Soc. Faraday Trans.

    (1980)
  • D.H. Powell et al.

    J. Chem. Phys.

    (1991)
  • Y. Ducommun et al.

    Helv. Chim. Acta

    (1982)
  • Y. Ducommun et al.

    Inorg. Chem.

    (1980)
  • A.D. Hugi et al.

    Inorg. Chem.

    (1987)
  • A.D. Hugi et al.

    Helv. Chim. Acta

    (1985)
  • F.-C. Xu et al.

    Inorg. Chem.

    (1985)
  • T.W. Swaddle et al.

    Inorg. Chem.

    (1981)
  • M. Grant et al.

    Inorg. Chem.

    (1985)
  • D. Hugi-Cleary et al.

    J. Am. Chem. Soc.

    (1987)
  • I. Rapaport et al.

    Inorg. Chem.

    (1988)
  • N. Aebischer et al.

    Inorg. Chem.

    (1993)
  • G. Laurenczy et al.

    Magn. Reson. Chem.

    (1991)
  • L. Helm et al.

    Helv. Chim. Acta

    (1984)
  • L. Helm et al.

    Inorg. Chem.

    (1985)
  • R. Akesson et al.

    J. Am. Chem. Soc.

    (1994)
  • F.P. Rotzinger

    J. Am. Chem. Soc.

    (1996)
  • F.P. Rotzinger

    J. Am. Chem. Soc.

    (1997)
  • F.P. Rotzinger

    Chimia

    (1997)
  • M. Hartmann et al.

    J. Am. Chem. Soc.

    (1997)
  • R.J. Deeth et al.

    Inorg. Chem.

    (1996)
  • C. Cossy et al.

    J. Chem. Phys.

    (1989)
  • C. Cossy et al.

    N. J. Chem.

    (1995)
  • A. Habenschuss et al.

    J. Chem. Phys.

    (1979)
  • Cited by (0)

    View full text