Biophysical Journal
Volume 64, Issue 1, January 1993, Pages 44-57
Journal home page for Biophysical Journal

Research Article
Cell shape-dependent rectification of surface receptor transport in a sinusoidal electric field

https://doi.org/10.1016/S0006-3495(93)81339-0Get rights and content
Under an Elsevier user license
open archive

In the presence of an extracellular electric field, transport dynamics of cell surface receptors represent a balance between electromigration and mutual diffusion. Because mutual diffusion is highly dependent on surface geometry, certain asymmetrical cell shapes effectively create an anisotropic resistance to receptor electromigration. If the resistance to receptor transport along a single axis is anisotropic, then an applied sinusoidal electric field will drive a net time-average receptor displacement, effectively rectifying receptor transport. To quantify the importance of this effect, a finite difference mathematical model was formulated and used to describe charged receptor transport in the plane of a plasma membrane. Representative values for receptor electromigration mobility and diffusivity were used. Model responses were examined for low frequency (10(-4)-10 Hz) 10-V/cm fields and compared with experimental measurements of receptor back-diffusion in human fibroblasts. It was found that receptor transport rectification behaved as a low-pass filter; at the tapered ends of cells, sinusoidal electric fields in the 10(-3) Hz frequency range caused a time-averaged accumulation of receptors as great as 2.5 times the initial uniform concentration. The extent of effective rectification of receptor transport was dependent on the rate of geometrical taper. Model studies also demonstrated that receptor crowding could alter transmembrane potential by an order of magnitude more than the transmembrane potential directly induced by the field. These studies suggest that cell shape is important in governing interactions between alternating current (ac) electric fields and cell surface receptors.

Cited by (0)