Elsevier

Nuclear Physics B

Volume 477, Issue 1, 7 October 1996, Pages 65-104
Nuclear Physics B

Stable superstring relics

https://doi.org/10.1016/0550-3213(96)00371-9Get rights and content

Abstract

We investigate the cosmological constraints on exotic stable matter states which arise in realistic free fermionic superstring models. These states appear in the superstring models due to a “Wilsonline” breaking of the unifying non-abelian gauge symmetry. In the models that we consider the unifying SO(10) gauge symmetry is broken at the string level to SO(6) x SO(4), SU(5) x U(1) or SU(3) x SU(2) x U(1)2. The exotic matter states are classified according to the patterns of the SO(10) symmetry breaking. In SO(6) x SO(4) and SU(5) x U(1) type models one obtains fractionally charged states with Qe.m. = ±12. In SU (3) x SU (2) x U(1)2 type models one also obtains states with the regular charges under the Standard Model gauge group but with “fractional” charges under the U(1)z symmetry. These states include down-like color triplets and electroweak doublets, as well as states which are Standard Model singlets. By analyzing the renormalizable and nonrenormalizable terms of the superpotential in a specific superstring model, we show that these exotic states can be stable. We investigate the cosmological constraints on the masses and relic density of the exotic states. We propose that, while the abundance and the masses of the fractionally charged states are highly constrained, the Standard Model-like states, and in particular the Standard Model singlet, are good dark matter candidates.

References (78)

  • D.C. Lewellen

    Nucl. Phys. B

    (1990)
    J. Ellis et al.

    Phys. Lett. B

    (1990)
    A. Font et al.

    Nucl. Phys. B

    (1990)
  • S. Chaudhuri, S.-W. Chung, G. Hockney and J. Lykken,...
  • G. Aldazabal, A. Font, L.E. Ibáñez and A.M. Uranga,...
  • G. Cleaver,...D. Finnell

    Phys. Rev. D

    (1996)
  • T.T. Burwick et al.

    Nucl. Phys. B

    (1991)
    A. Kagan et al.

    Phys. Lett. B

    (1992)
  • J. Lopez et al.

    Nucl. Phys. B

    (1993)
  • L.E. Ibañez et al.

    Phys. Lett. B

    (1987)
    A. Font et al.

    Phys. Lett. B

    (1988)
    A. Font et al.

    Nucl. Phys. B

    (1990)
    D. Bailin et al.

    Nucl. Phys. B

    (1988)
    J.A. Casas et al.

    Nucl. Phys. B

    (1989)
    S. Chaudhuri et al.

    Nucl. Phys. B

    (1996)
  • A.E. Faraggi

    Phys. Lett. B

    (1994)
  • E. Witten

    Nucl. Phys. B

    (1985)
    J.D. Breit et al.

    Phys. Lett. B

    (1985)
    A. Sen

    Phys. Rev. Lett.

    (1985)
  • T. Banks et al.

    Phys. Rev. D

    (1994)
  • E. Halyo

    Nucl. Phys. B

    (1995)
  • X.G. Wen et al.

    Nucl. Phys. B

    (1985)
    G.G. Athanasiu et al.

    Phys. Lett. B

    (1988)
    A. Schellekens

    Phys. Lett. B

    (1990)
  • J. Ellis et al.

    Phys. Lett. B

    (1990)
  • P. Huet

    Nucl. Phys. B

    (1991)
  • A.E. Faraggi

    Phys. Rev. D

    (1992)
  • A.E. Faraggi

    Phys. Lett. B

    (1992)
  • S. Chang, C. Corianó and A.E. Faraggi,...
  • K.R. Dienes et al.

    Phys. Rev. Lett.

    (1995)
    K.R. Dienes et al.

    Nucl. Phys. B

    (1995)
  • A.E. Faraggi

    Nucl. Phys. B

    (1993)
    A.E. Faraggi

    Phys. Lett. B

    (1994)
  • A.E. Faraggi

    Phys. Lett. B

    (1993)
  • S. Kalara et al.

    Nucl. Phys. B

    (1991)
  • A.E. Faraggi

    Nucl. Phys. B

    (1993)
  • [30]M. Turner,...
  • V.S. Kaplunovsky

    Nucl. Phys. B

    (1988)
    V.S. Kaplunovsky

    Erratum: 382

    (1992)
  • L.J. Dixon et al.

    Nucl. Phys. B

    (1991)
    I. Antoniadis et al.

    Phys. Lett. B

    (1991)
    I. Antoniadis et al.

    Phys. Lett. B

    (1991)
    J.P. Derendinger et al.

    Nucl. Phys. B

    (1992)
    G. Lopes Cardoso et al.

    Nucl. Phys. B

    (1992)
    P. Mayr et al.

    Nucl. Phys. B

    (1994)
    D. Bailin et al.

    Phys. Lett. B

    (1992)
    D. Bailin et al.

    Mod. Phys. Lett. A10

    (1995)
    M. Chemtob

    Phys. Rev. D

    (1996)
    E. Kiritsis et al.

    Nucl. Phys. B

    (1995)
  • I. Antoniadis et al.

    Phys. Lett. B

    (1991)
    S. Kelley et al.

    Phys. Lett. B

    (1992)
    I. Antoniadis et al.

    Phys. Lett. B

    (1992)
    M.K. Gaillard et al.

    Phys. Lett. B

    (1992)
  • I. Antoniadis et al.

    Phys. Lett. B

    (1992)
    S.P. Martin et al.

    Phys. Rev. D

    (1995)
  • J.A. Casas et al.

    Phys. Lett. B

    (1988)
    L.E. lbáñez

    Phys. Lett. B

    (1993)
    K.R. Dienes et al.

    Nucl. Phys. B

    (1996)
  • For an alternative proposal based on strongly interacting strings, see E. Witten,...
  • L.M. Krauss et al.

    Phys. Rev. Lett. 62

    (1989)
  • M. Dine et al.

    Nucl. Phys. B

    (1987)
    J.J. Atick et al.

    Nucl. Phys. B

    (1987)
    S. Cecotti et al.

    Int. J. Mod. Phys. A

    (1987)
  • M. Srednicki et al.

    Nucl. Phys. B

    (1988)
  • E.W. KolB et al.

    The Early Universe

    (1990)
  • A. Gould et al.

    Phys. Lett. B

    (1990)
  • D.B. Sanders et al.

    Astrophys. J.

    (1989)
    A. van Dalen et al.

    Astrophys. J.

    (1992)
    A.N. Taylor et al.

    Nature

    (1992)
    J.A. Holtzman et al.

    Astrophys. J.

    (1993)
  • J.M. Bardeen et al.

    Astrophys. J.

    (1987)
    E.J. Chun et al.

    Phys. Rev. Lett.

    (1994)
  • G.D. Starkman et al.

    Phys. Rev. D

    (1990)
  • B. Holdom

    Phys. Lett. B

    (1994)
  • P.H. Frampton and B.D. Wright,...
  • Cited by (80)

    • Three-generation super no-scale models in heterotic superstrings

      2022, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
    • UV completion of an axial, leptophobic, Z′

      2020, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
    View all citing articles on Scopus
    4

    Permanent address.

    View full text