Elsevier

Marine Micropaleontology

Volume 8, Issue 2, September 1983, Pages 121-139
Marine Micropaleontology

Stable isotopic study of Oligocene-Miocene sediments from DSDP Site 354, Equatorial Atlantic

https://doi.org/10.1016/0377-8398(83)90008-7Get rights and content

Abstract

The oxygen- and carbon-isotope compositions of planktic and benthic foraminifera and calcareous nannofossils from Middle Oligocene-Early Miocene Equatorial Atlantic sediments (DSDP Site 354) indicate two important paleoceanographic changes, in the Late Oligocene (foraminiferal Zone P.21) and in the Early Miocene (foraminiferal Zone N.5). The first change, reflected by a δ18O increase of 1.45‰ inGlobigerina venezuelana, affected only intermediate pelagic and not surface, deep or bottom waters. The second change affected surface and intermediate waters, whereas deep and bottom waters showed only minor fluctuations. In the case of the former the isotope effect of the moderate ice accumulation on the Antarctic continent is amplified in the Equatorial Atlantic by changes in the circulation pattern. The latter paleoceanographic change, reflected by a significant increase in18O in both planktic and benthic forms (about 1.0‰ and 0.5‰, respectively), may have been caused by ice volume increase and temperature decrease. Both oxygen- and carbon-isotope compositions indicate a marked depth-habitat stratification for planktic foraminifera and calcareous nannofossils. Three different dwelling groups are recognized: shallowGlobigerinoides, Globoquadrina dehiscens, Globorotalia mayeri and nannofossils; intermediateGlobigerina venezuelana; and deepCatapsydrax dissimilis. The comparison of foraminifera and calcareous nannofossils suggests that the isotopic compositions of nannofossils are generally controlled by the same parameters which control the isotopic composition of shallow-dwelling foraminifera, but the former are more enriched in18O.

References (71)

  • MooreT.C. et al.

    Ocean basin and depth variability of oxygen isotopes in Cenozoic benthic foraminifera

    Mar. Micropaleontol.

    (1981)
  • SavinS.M. et al.

    Miocene benthic foraminiferal isotope records: a synthesis

    Mar. Micropaleontol.

    (1981)
  • ShackletonN.J. et al.

    Oxygen and carbon isotope studies in recent foraminifera from the southwest Indian Ocean

    Mar. Micropaleontol.

    (1978)
  • WilliamsD.F. et al.

    Carbon isotopic compositions in Recent planktonic foraminifera of the Indian Ocean

    Earth Planet. Sci. Lett.

    (1977)
  • WoodruffF. et al.

    Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera

    Mar. Micropaleontol.

    (1980)
  • AndersonT.F. et al.

    The stable isotope geochemistry of marinecoccoliths: a preliminary comparison with planktonic foraminifera

    J. Foraminiferal Res.

    (1975)
  • Be´A.W.H. et al.

    Shell growth and structure of planktonic foraminifera

    Science

    (1964)
  • Be´A.W.H. et al.

    Distribution and ecology of living planktonic Foraminifera in surface waters in the Atlantic and Indian Oceans

  • BergerW.H. et al.

    Stable isotopes in deep-sea carbonates: Bob Core ERDC-92, West Equatorial Pacific

    Oceanol. Acta

    (1978)
  • BiolziM.

    The Oligocene/Miocene boundary in the Equatorial Atlantic DSDP Site 354. Results of studies on planktic foraminifera and calcareous nannofossils

    Riv. Ital. Paleontol. Stratigr.

    (1982)
  • BlowW.H.

    Late middle Eocene to Recent planktonic foraminiferal biostratigraphy

  • BoersmaA. et al.

    Tertiary oxygen and carbon isotope stratigraphy, Site 357 (mid latitude south Atlantic)

  • BoersmaA. et al.

    Oxygen and carbon isotope record through the Oligocene, DSDP Site 366, Equatorial Atlantic

  • BolliH.M.

    Zonation of Cretaceous to Pliocene marine sediments based on planktonic Foraminifera

    Boll. Inf. Assoc. Venez. Min. Petrol.

    (1966)
  • BradshawJ.S.

    Ecology of Living Planktonic Foraminifera in the North and Euqatorial Pacific Ocean

  • BroeckerW.S. et al.

    Carbonate dissolution on the western flank of the east Pacific Rise

  • BuchardtB. et al.

    Oxygen isotope fractionation and algal symbiosis in benthic foraminifera from the Gulf of Elat, Israel

    Bull. Geol. Soc. Den.

    (1977)
  • DevereuxI.

    Oxygen isotope paleotemperature measurements on New Zealand Tertiary fossils

    N.Z. J. Si.

    (1967)
  • DormanF.H.

    Australian Tertiary paleotemperatures

    J. Geol.

    (1966)
  • DouglasR.G. et al.

    Oxygen and carbon isotope analyses of Cretaceous and Tertiary foraminifera from the central North Pacific

  • DuplessyJ.C. et al.

    Differential isotopic fractionation in benthic foraminifera and paleotemperatures reassessed

    Science

    (1970)
  • EmilianiC.

    Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios

    Am. J. Sci.

    (1954)
  • EmilianiC.

    Pleistocene temperatures

    J. Geol.

    (1955)
  • EmilianiC.

    Depth habitats of growth stages of pelagic foraminifera

    Science

    (1971)
  • Cited by (18)

    • Cenozoic coccolith size changes-Evolutionary and/or ecological controls?

      2012, Palaeogeography, Palaeoclimatology, Palaeoecology
    • Geochemical assessment of the palaeoecology, ontogeny, morphotypic variability and palaeoceanographic utility of "Dentoglobigerina" venezuelana

      2012, Marine Micropaleontology
      Citation Excerpt :

      Most stable isotope studies of planktic foraminifera assign “D.” venezuelana to a sub-thermocline habitat (Barrera et al., 1985; Keller, 1985; Hodell and Vayavananda, 1993; Norris et al., 1993; Pearson and Shackleton, 1995; Pearson et al., 2001; Smart and Thomas, 2006; Spezzaferri and Pearson, 2009). However, data generated on samples of O/M boundary age (~ 23 Ma), from Ceara Rise and Trinidad, imply that “D.” venezuelana calcified higher in the water column, within the thermocline (Biolzi, 1983; Pearson et al., 1997; Pearson and Wade, 2009). Furthermore, results from analysis of Oligocene (~ 28 Ma) age samples from the Gulf of Mexico (Poore and Matthews, 1984) and the equatorial Pacific at ODP Site 1218 (Wade et al., 2007), imply that calcification took place within the mixed layer.

    View all citing articles on Scopus
    View full text