A conformational preference parameter to predict helices in integral membrane proteins

https://doi.org/10.1016/0167-4838(86)90295-5Get rights and content

Abstract

Assignments were made for helical regions in several integral membrane proteins using an algorithm devised to delineate the transmembrane helices in bacteriorhodopsin (Eur. J. Biochem. 182 (1982) 565–575). A new conformational preference parameter for membrane-buried helices was obtained. The use of this parameter to predict helices in membrane proteins is discussed. When applied to the L and M subunits of Rhodopseudomonas sphaeroides, five helices were predicted, which is consistent with the three-dimensional X-ray crystal structure. Data on signal sequences and amino acid exchanges in membrane proteins are also analysed and discussed.

References (80)

  • R.A. Capaldi

    Trends Biochem. Sci.

    (1982)
  • H. Michel

    J. Mol. Biol.

    (1982)
  • H. Michel

    Trends Biochem. Sci.

    (1983)
  • D.D. Jones

    J. Theor. Biol.

    (1975)
  • J.K. Mohana Rao et al.

    FEBS Lett.

    (1983)
  • P. Argos et al.

    Biochim. Biophys. Acta

    (1985)
  • G. Macino et al.

    Cell

    (1980)
  • S. Anderson et al.

    J. Mol. Biol.

    (1982)
  • M.J. Bibb et al.

    Cell

    (1981)
  • F.G. Nobrega et al.

    J. Biol. Chem.

    (1980)
  • S.G. Bonitz et al.

    J. Biol. Chem.

    (1980)
  • T.D. Fox et al.

    Cell

    (1981)
  • G. Coruzzi et al.

    J. Biol. Chem.

    (1979)
  • E. Wachter et al.

    FEBS Lett.

    (1980)
  • J. Kyte et al.

    J. Mol. Biol.

    (1982)
  • S.J. Ferguson

    Trends Biochem. Sci.

    (1984)
  • F.S. Heinemann et al.

    J. Biol. Chem.

    (1983)
  • P.A. Hargrave

    Progr. Retin. Res.

    (1982)
  • M. Levitt et al.

    J. Mol. Biol.

    (1977)
  • B.M. Austen

    FEBS Lett.

    (1979)
  • M. Saraste

    FEBS Lett.

    (1984)
  • K.G. Welinder et al.

    FEBS Lett.

    (1983)
  • R.B. Waring et al.

    Cell

    (1981)
  • S.J. Kennedy

    Membrane Biol.

    (1978)
  • N. Unwin et al.

    Sci. Am.

    (1984)
  • S.K. Malhotra
  • R.M. Garavito et al.

    J. Cell. Biol.

    (1980)
  • T. Ozawa

    J. Bioenerg. Biomembranes

    (1984)
  • R.A. Crowther et al.

    Annu. Rev. Biochem.

    (1975)
  • R. Henderson et al.

    Nature (London)

    (1975)
  • H. Michel et al.
  • P.Y. Chou et al.

    Biochemistry

    (1974)
  • P.Y. Chou et al.

    Biochemistry

    (1974)
  • R.V. Wolfenden et al.

    Science

    (1979)
  • Von Heijne

    Eur. J. Biochem.

    (1981)
  • H. Trewhella et al.

    Biophys. J.

    (1983)
  • J. Levitt

    Biochemistry

    (1978)
  • P. Argos et al.

    Eur. J. Biochem.

    (1982)
  • P.A. Hargrave et al.

    Biophys. Struct. Mech.

    (1983)
  • M. Noda et al.

    Nature (London)

    (1982)
  • Cited by (466)

    • Thioredoxin h isoforms from rice are differentially reduced by NADPH/thioredoxin or GSH/glutaredoxin systems

      2015, International Journal of Biological Macromolecules
      Citation Excerpt :

      Members of the Trx superfamily share a similar fold, known as the Trx-fold (consisting of a four-stranded β-sheet surrounded by three α-helices), which is in common with the three-dimensional structure of glutaredoxins (Grxs) [2]. Despite these common features, Trxs play important roles in many diverse biological processes including redox-sensitive signal transduction [3], synthesis of deoxyribonucleotides, protein repair [4], protein folding [5], cellular apoptosis [6], symbiosis [7] and protecting against toxicity [8]. In plants, compared to other photosynthetic and/or non-photosynthetic organisms, Trx isoforms constitute a large multigene family [9].

    View all citing articles on Scopus
    View full text