Elsevier

Signal Processing

Volume 52, Issue 3, August 1996, Pages 299-321
Signal Processing

Paper
On nonparametric estimation of nonlinear dynamic systems by the Fourier series estimate

https://doi.org/10.1016/0165-1684(96)00067-9Get rights and content

Abstract

The paper deals with estimation of block oriented systems by the Fourier series estimate. Three types of systems are considered: cascade of nonlinear memoryless systems, Hammerstein system and Wiener system. The optimal model of memoryless cascade system is derived and estimated by the Fourier series regression estimate. Nonlinear dynamical systems of Hammerstein and Wiener type with arbitrary nonlinearities are estimated by means of nonparametric techniques. Convergence and the rates of estimation procedures are investigated. Convergence results are verified in computer experiments.

Zusammenfassung

Dieser Artikel behandelt die Schätzung blockorientierter Systeme mit Hilfe des Fourierreihen-Schätzers. Drei Typen von Systemen werden betrachtet, nämlich die Serienschaltung nichtlinearer gedächtnisloser Systeme, das Hammerstein-System und das Wiener-System. Das optimale Modell eines gedächtnislosen Serienschaltungs-Systems wird abgeleitet und mit Hilfe des Fourierreihen-Regressionsschätzers geschätzt. Nichtlineare dynamische Systeme des Hammerstein- und Wiener-Typs mit beliebigen Nichtlinearitäten werden mittels nichtparametrischer Methoden geschätzt. Die Konvergenz und die Geschwindigkeit von Schätzprozeduren werden untersucht. Die Konvergenzergebnisse werden durch Computer-Experimente bestätigt.

Résumé

Cet article parle de l'estimation de systèmes orientés par blocs à l'aide de l'estimée de la série de Fourier. Trois types de systèmes sont considérés: une cascade de systèmes nonlinéaires sans mémoire, le système de Hammerstein et le système de Wiener. Le modèle optimal de système en cascade sans mémoire est dérivé et évalué, à l'aide de l'estimée de la régression de la série de Fourier. Les systèmes dynamiques nonlinéaires de types Hammerstein et Wiener avec des nonlinéarites arbitraires sont estimés au moyen de techniques non paramétriques. La convergence et les taux des différentes procédures d'estimation sont étudiés. Les résultats de convergence sont vérifiés par des simulations informatiques.

References (49)

  • H.Y. Chung et al.

    Analysis and parameter estimation of nonlinear systems with Hammerstein model using Taylor series approach

    IEEE Trans. Circuits Systems

    (1988)
  • L. Devroye et al.
  • R.C. Emerson et al.

    Identification of complex-cell intensive nonlinearities in a cascade model of cat visual cortex

    Biological Cybernetics

    (1992)
  • E. Eskinat et al.

    Use of Hammerstein models in the identification of nonlinear systems

    Amer. Inst. Chem. Eng. J.

    (1991)
  • R.L. Eubank
  • A.S. French et al.

    Nonlinear neuronal mode analysis of action potential encoding in the cockroach tactile spine neuron

    Biological Cybernetics

    (1995)
  • P.G. Gallman

    An iterative method for identification of nonlinear systems using a Uryson model

    IEEE Trans. Automat. Control.

    (1975)
  • W. Greblicki

    Nonparametric identification of Wiener systems

    IEEE Trans. Inform. Theory

    (1992)
  • W. Greblicki et al.

    Non-parametric identification of a memoryless system with cascade structure

    Internat. J. Syst. Science

    (1979)
  • W. Greblicki et al.

    Fourier and Hermite series estimates of regression functions

    Ann. Inst. Statist. Math.

    (1985)
  • W. Greblicki et al.

    Identification of discrete Hammerstein systems using kernel regression estimates

    IEEE Trans. Automat. Control

    (1986)
  • L. Györfi et al.
  • W. Härdle
  • Z. Hasiewicz

    Identifiability of large-scale interconnected linear zero-memory systems

    Internat. J. Systems Sci.

    (1987)
  • Cited by (24)

    • Identification of continuous-time Hammerstein systems by simultaneous perturbation stochastic approximation

      2016, Expert Systems with Applications
      Citation Excerpt :

      Over the past two decades, various methods for identification of Hammerstein systems have been studied extensively. These can be roughly classified into several categories, such as the iterative method (Liu & Bai, 2007; Narendra & Gallman, 1966; Rangan, Wolodkin, & Polla, 1995; Stoica, 1981; Voros, 1997), the over-parameterization method (Chang & Luus, 1971; Ding, Chen, & Iwai, 2007a; Hsia, 1976), the blind approach (Bai & Fu, 2002), the subspace method (Verhaegen & Westwick, 1996), the least squares method (Ding & Chen, 2005; Goethals, Pelckmans, Suykens, & Moor, 2005), the parametric instrumental variables method (Laurain, Gilson, & Garnier, 2009; Stoica & Soderstrom, 1981), the stochastic method (Bilings & Fakhouri, 1978; Greblicki, 1996; Pawlak, 1991) and the non-parametric identification method (Bai, 2003; Greblicki & Pawlak, 1987; Krzyak, 1993, 1996). Recently, a decomposition-based Newton iterative identification approach for a Hammerstein nonlinear FIR system with ARMA noise was presented by Ding, Deng, and Liu (2014).

    • Frequency domain analysis and identification of block-oriented nonlinear systems

      2011, Journal of Sound and Vibration
      Citation Excerpt :

      Therefore, once different orders of output spectrum are achieved, many existing algorithms (e.g., Least Square) can be employed to estimate model parameters involved in each order output spectrum, and finally the nonlinear system model could be obtained. Although frequency domain identification of block-oriented nonlinear systems has been discussed in the literature, existing methods usually assume known structure and invertibility of nonlinearity, or require the linear part to be a rational transfer function, or involve many repeated experiments with different magnitudes and frequencies restrictively using sinusoidal input signals [32,35–38,40]. In this section, to estimate different orders of output spectrum, no priori knowledge is required for model structure and orders.

    View all citing articles on Scopus
    1

    This research was supported by NSERC grant OGP000270, FCAR grant 92-RE-0147, Alexander von Humboldt Fellowship, and by the Vinberg Scholarship, while the author spent sabbatical leave at Computer Science Department at Technion-Israel Institute of Technology. The author gratefully acknowledges the support of the Frontier Research Program RIKEN, Artificial Brain Systems Laboratory, Wakoshi, Japan.

    View full text