Regulation of glycolysis in the ischemic and the anoxic myocardium

Dedicated to Professor Dr C. Kaufmann for his 70th birthday.
https://doi.org/10.1016/0022-2828(70)90034-9Get rights and content

Abstract

Experiments were done in dogs with various durations of myocardial anoxia in the following conditions: (1) so-called ischemic cardiac arrest in normo- or hypothermia; (2) anoxic perfusion of the heart with and without added glucose; (3) ischemia with cardioplegia in normo- or hypothermia. Even after a pronounced reduction of the myocardial energy demands following cardioplegia and/or hypothermia, anaerobic glycolytic energy production is insufficient to cover the myocardial energy demands during ischemia. When the oxygen tension becomes critical in the ischemic myocardium (pO2 < 5 mmHg) the high energy phosphates—at first mainly phosphocreatine—are broken down and lactate is produced. At this very early stage of ischemia the adenine nucleotides show only minor changes in their concentrations. The transition from aerobic to anaerobic energy production (Pasteur-effect) leads to a 20-fold increase in the glycolytic flux. The Pasteur-effect leads to an activation of phosphorylase, hexokinase, phosphofruktokinase and pyruvate kinase and probably to activity changes of glycerinealdehyde phosphate-dehydrogenase or phosphoglycerate kinase. Glycolytic flux is controlled by the above mentioned enzymes and in addition by aldolase- and phosphoglucomutase reaction depending on the experimental conditions and the duration of ischemia. Reduction of myocardial energy demands by cardioplegia and/or hypothermia leads to a corresponding reduction of lactate production. This is related to changes in the activity of the phosphofructokinase reaction. Independent of the experimental conditions anaerobic energy production in the ischemic myocardium can only cover 65 to 70% of total anaerobic energy demand. In a heart perfused with a solution free of oxygen and glucose, glycolysis is able to cover 75 to 80% of the anaerobic energy demand; by adding glucose to the perfusate this value can be increased to 85 to 90%. Only 1 to 10% of the glycolytic enzyme activities as measured in vitro can be utilized in vivo for lactate production under anaerobic conditions. An exception is the activity of hexokinase which in vivo can be about 20% of its maximal in vitro activity. Enzymes of tricarboxylic acid cycle and of the respiratory chain operate in vivo nearer their maximal activity determined in vitro (20 to 60%). The glycolytic flux in the ischemic myocardium is mainly limited by the phosphofructokinase reaction. Only during the earliest stages of ischemia does activation of phosphorylase determine lactate production. When the myocardial ATP content has fallen to about 3.5 μmol/g wet weight (i.e. almost half of normal) the phosphoglucomutase reaction becomes the rate-limiting step of glycolysis; the ATP values of 3.5 μmol/g correlate with the limit of tolerated myocardial ischemia under clinical conditions. The cessation of lactate production is due to lack of ATP for the phosphorylation of fructose-6-phosphate to fructose diphosphate. This happens at a myocardial ATP-content < 2 μmol/g wet weight and correlates with the theoretical limit of tolerated myocardial ischemia. In the anoxic perfused heart glycolytic flux is not limited by the phosphofructokinase reaction. Under these conditions no intracellular acidosis builds up and phosphofructokinase is not inactivated. Thus lactate production is more active than in the ischemic myocardium. As a consequence of the greater activity of phosphofructokinase glucose-6-phosphate does not accumulate, therefore—unlike under ischemic conditions—hexokinase is active and glucose utilized.

References (72)

  • J.R. Williamson

    Glycolytic control mechanisms. I. Inhibition of glycolysis by acetate and pyruvate in the isolated perfused rat heart

    Journal of Biological Chemistry

    (1965)
  • J.R. Williamson

    Glycolytic control mechanisms. II. Kinetics of intermediate changes during aerobic-anoxic transition in perfused rat heart

    Journal of Biological Chemistry

    (1966)
  • A. Wollenberger

    Relation between work and labile phosphate content in the isolated dog heart

    Circulation Research

    (1957)
  • A. Wollenberger et al.

    Metabolic control characteristics of the acutely ischemic myocardium

    American Journal of Cardiology

    (1968)
  • A. Wollenberger et al.

    Endogenous catecholamine mobilization and the shift to anaerobic energy production in the acutely ischemic myocardium

  • G. Arnold et al.

    Die Temperaturabhängigkeit des Sauerstoffverbrauches stillgestellter, künstlich perfundierter Warmblüterherzen zwischen 34°C und 4°C

    Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tierre

    (1965)
  • R.J. Bing

    Cardiac metabolism

    Physiological Review

    (1965)
  • K. Bonhoeffer

    Der Saüerstoffverbraüch des normo- ünd hypothermen Hündeherzens vor ünd während verschiedener Formen des indüsierten Herzstillstandes

  • K. Bonhoeffer et al.

    Bestimmung kleiner Saüerstoffverbraüchswerte des hypothermen Hünderherzens mit Hilfe einer fortlaufenden Messung des Saüerstoffdruckes in einem hämoglobinfreien Koronarperfusat

    Archiv für klinische Chirurgie

    (1964)
  • H.J. Bretschneider

    Überlebens- und Wiederbelebungszeit des Herzens bei Normo- und Hypothermie

    Verhandlungen der Deutschen Gesellschaft für Kreislauffoischung

    (1964)
  • H.J. Bretschneider et al.

    Über den kritischen Wert und die physiologische Abhängigkeit der O2— Sättigung des venösen Coronarblutes

    Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tierre

    (1957)
  • D.H. Brown et al.

    Animal and plant polysaccharide phosphorylases

  • Th. Bücher et al.

    Gleichgewicht und Ungleichgewicht im System der Glykolyse

    Angewandte Chemie

    (1963)
  • B. Chance

    Control of energy metabolism in mitochondria

  • B. Chance et al.

    Localization of interaction sites in multicomponent transfer systems: Theorem derived from analogues

    Nature

    (1958)
  • H.J. Döring et al.

    Anderungen des Herzdurchmessers unter dem Einfluß von Sauerstoffmangel, Stoffwechsel-Inhibitoren und erregungshemmenden Substanzen

  • H. Fabel et al.

    Die Bestimmung des Myoglobingehaltes und des kritischen Sauerstoffdruckes am schlagenden Kaninchenherzen in situ

    Pflügers Archiv für die Gesamte Physiologie der Menschen und der Tierre

    (1964)
  • A. Fleckenstein

    Physiologie und Pathophysiologie des Myokards stoffwechsels im Zusammenspiel mit den bioelektrischen und mechanischen Fundamental-prozessen

  • Kl. Gollwitzer-Meier

    Anoxämie und Kreislauf

    Pflügers Archiv für die Gesamte Physiologie der Menschen und der Tierre

    (1938)
  • B. Hess

    Koordination von Atmung und Glykolyse

  • H. Hochrein et al.

    Die energiereichen Phosphate des Myokards bei Variation der Belastungsbedingungen

    Pflügers Archiv für die Gesamte Physiologie der Menschen und der Tierre

    (1960)
  • Holldorf, A. W. II Gleichgewichtskonstanten, freie Energie und Redoxpotentiale biologisch wichtiger Reaktionen. In...
  • W. Isselhard et al.

    Temperaturabhängigkeit der Änderungen im Stoffwechselstatus des künstlich stillgestellten, anaeroben Herzens

    Zeitschrift für die gesamte experimentalle Medizin

    (1968)
  • W. Isselhard et al.

    Vergleich des Herzstoffwechsels bei verschiedenen Methoden des künstlichen Herzstillstandes

    Pflügers Archiv für die Gesamte Physiologie der Menschen und der Tierre

    (1965)
  • J. Keul et al.

    Über den Stoffwechsel des menschlichen Herzens. I. Die Substratversorgung des gesunden menschlichen Herzens in Ruhe, während und nach körperlicher Arbeit

    Pflügers Archiv für die Gesamte Physiologie der Menschen und der Iierre

    (1965)
  • H. Kreuzer et al.

    Funktionsänderungen des Myocards bei experimentellem Koronarverschluß

    Verhandlungen der Deutschen Gesellschraft für innere Medizin

    (1963)
  • Cited by (243)

    • The Use of Histidine-tryptophan-ketoglutarate Solution as a New Storage Medium for the Avulsed Tooth

      2020, Journal of Endodontics
      Citation Excerpt :

      HTK solution does not contain glucose, the substrate of aerobic metabolism16. Because organs preserved for transplantation are ischemic, glucose is subjected to glycolysis, resulting in the production of lactate25 and damage because of lactic acidosis26. To prevent this, HTK solution contains ketoglutarate, a substrate for anaerobic metabolism, which does not result in the production of lactate.

    • The role of the ATPase inhibitor factor 1 (IF<inf>1</inf>) in cancer cells adaptation to hypoxia and anoxia

      2018, Biochimica et Biophysica Acta - Bioenergetics
      Citation Excerpt :

      Under this condition, if the inner mitochondrial membrane is intact, the energy released by ATP hydrolysis is coupled to the building of a transmembrane ΔpΗ and Δψm increases. This occurs in cardiomyocytes during ischemic episodes where the presence of endogenous glycogen allows the cells to survive by activating glycogenolysis to supply cytosolic ATP, which in turn is transported to the mitochondrial matrix by the adenine nucleotide translocator (ANT) that also works in reverse (i.e. ATP is imported by mitochondria in exchange for ADP) contributing the Δψm [9]. Incidentally, a recent report provides findings indicating that cancer cells can import cytosolic ATP even in ANT suppressed cells [10].

    View all citing articles on Scopus
    View full text