Elsevier

Diabetes & Metabolism

Volume 29, Issue 6, December 2003, Pages 566-575
Diabetes & Metabolism

Review
Positive and negative regulation of glucose uptake by hyperosmotic stress

https://doi.org/10.1016/S1262-3636(07)70071-XGet rights and content

Summary

This review will provide insight on the current understanding of the intracellular signaling mechanisms by which hyperosmolarity mimics insulin responses such as Glut 4 translocation and glucose transport but also antagonizes insulin effects. Glucose uptake induced by insulin is largely dependent on the PI 3-kinase/PKB pathway. In both adipocyte and muscle cells, hyperosmolarity promotes glucose uptake by multiple mechanisms which do not require PI 3-kinase/PKB pathway but are dependent on the cell type. In muscle, osmotic stress induces glucose uptake by stimulation of AMP-Kinase and/or inhibition of Glut 4 endocytosis. In adipocytes, activation of Gab1-dependent signaling pathway plays an important role in osmotic stress-mediated glucose uptake. Apart of its insulin-like effects, hyperosmolarity can lead to cellular insulin resistance mediated by both prevention of PKB activation and inhibition of the Insulin Receptor Substrate-1 (IRS1) function. Serine phosphorylation and degradation of IRS1 negatively regulate its functions. Understanding how osmotic stress induces glucose transport or mediates insulin resistance may provide novel targets for strategies to enhance glucose transport or to prevent insulin resistance.

Résumé

Régulation positive et négative du transport du glucose par le stress hyperosmolaire

Le stress hyperosmolaire a un double effet: il mime l'effet de l'insuline sur la translocation des transporteurs de glucose Glut 4 et sur le transport du glucose, mais il inhibe aussi les effets de l'insuline sur ces mêmes paramètres. Cette revue décrit les mécanismes intracellulaires par lesquels ces effets s'exercent. La captation de glucose induite par l'insuline est largement dépendante de la stimulation de la voie PI 3-kinase/PKB dans le muscle et l'adipocyte. Si l'hyperosmolarité induit également la captation de glucose, cet effet s'exerce par de multiples mécanismes qui sont indépendants de cette voie PI 3-kinase/PKB et qui diffèrent dans le muscle squelettique et dans l'adipocyte. Dans les lignées musculaires, l'augmentation du transport de glucose en réponse à un stress hyperosmolaire implique l'activation de l'AMP-Kinase et également une inhibition de l'endocytose des transporteurs de glucose Glut 4. Dans les lignées adipocytaires, c'est l'activation d'une voie dépendante de Gab-1 qui explique l'effet de l'hyperosmolarité. Indépendamment de ses effets insulinomimétiques, l'hyperosmolarité provoque également une insulinorésistance au niveau cellulaire qui s'explique d'une part par une désactivation de la PKB et d'autre part par une inhibition de la fonction d'IRS1. Cette rétrorégulation du signal insulinique est due à court terme à une phosphorylation d'IRS1 sur des résidus sérine et à long terme à une dégradation d'IRS1, deux processus que l'on retrouve dans l'insulinorésistance. Une meilleure connaissance des voies stimulées par le stress hyperosmolaire pour augmenter le transport de glucose ainsi que des mécanismes mis en jeu dans l'apparition de l'insulinorésistance peut fournir de nouvelles pistes et cibles thérapeutiques du diabète et de l'insulinorésistance.

References (76)

  • AR Saltiel et al.

    Insulin signalling and the regulation of glucose and lipid metabolism

    Nature

    (2001)
  • AR Saltiel et al.

    Insulin signaling pathways in time and space

    Trends Cell Biol

    (2002)
  • PH Ducluzeau et al.

    Molecular mechanisms of insulin-stimulated glucose uptake in adipocytes

    Diabetes Metab

    (2002)
  • AH Khan et al.

    Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways

    Diabetologia

    (2002)
  • K Sakamoto et al.

    Intracellular signaling in contracting skeletal muscle

    J Appl Physiol

    (2002)
  • JL Azevedo et al.

    Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle

    Diabetes

    (1995)
  • GD Cartee et al.

    Stimulation of glucose transport in skeletal muscle by hypoxia

    J Appl Physiol

    (1991)
  • J Mu et al.

    A role for AMP – activated protein kinase in contraction – and hypoxia-regulated glucose transport in skeletal muscle

    Mol Cell

    (2001)
  • N Bashan et al.

    Mechanisms of adaptation of glucose transporters to changes in the oxidative chain of muscle and fat cells

    Am J Physiol

    (1993)
  • ZA Khayat et al.

    Rapid stimulation of glucose transport by mitochondrial uncoupling depends in part on cytosolic Ca2+ and cPKC

    Am J Physiol

    (1998)
  • T Tsakiridis et al.

    Phosphatidylinositol 3-kinase and the actin network are not required for the stimulation of glucose transport caused by mitochondrial uncoupling: comparison with insulin action

    Biochem J

    (1995)
  • HS Hundal et al.

    Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells

    Endocrinology

    (1992)
  • G Zhou et al.

    Role of AMP-activated protein kinase in mechanism of metformin action

    J Clin Invest

    (2001)
  • X Wu et al.

    Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes

    Diabetes

    (2003)
  • T Yamauchi et al.

    Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase

    Nat Med

    (2002)
  • D Chen et al.

    Osmotic shock stimulates GLUT4 translocation in 3T3L1 adipocytes by a novel tyrosine kinase pathway

    J Biol Chem

    (1997)
  • H Sakaue et al.

    Phosphoinositide 3-kinase is required for insulin-induced but not for growth hormone- or hyperosmolarity-induced glucose uptake in 3T3-L1 adipocytes

    Mol Endocrinol

    (1997)
  • A Janez et al.

    The osmotic shock-induced glucose transport pathway in 3T3-L1 adipocytes is mediated by Gab-1 and requires Gab-1-associated phosphatidylinositol 3-kinase activity for full activation

    J Biol Chem

    (2000)
  • LG Fryer et al.

    Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase

    Diabetes

    (2000)
  • P Gual et al.

    A Crk-II/TC10 signaling pathway is required for osmotic shock-stimulated glucose transport

    J Biol Chem

    (2002)
  • R Meier et al.

    Inactivation and dephosphorylation of protein kinase Bα (PKBα) promoted by hyperosmotic stress

    EMBO J

    (1998)
  • D Chen et al.

    Osmotic shock inhibits insulin signaling by maintaining Akt/protein kinase B in an inactive dephosphorylated state

    Mol Cell Biol

    (1999)
  • AG Kayali et al.

    Stimulation of MAPK cascades by insulin and osmotic shock: lack of an involvement of p38 mitogen-activated protein kinase in glucose transport in 3T3-L1 adipocytes

    Diabetes

    (2000)
  • LF Barros et al.

    Hyperosmotic shock induces both activation and translocation of glucose transporters in mammalian cells

    Pflugers Arch

    (2001)
  • P Gual et al.

    Hyperosmotic stress inhibits IRS1 function by distinct mechanisms in 3T3-L1 adipocytes

    J Biol Chem

    (2003)
  • D Li et al.

    Hyperosmolarity reduces GLUT4 endocytosis and increases its exocytosis from a VAMP2-independent pool in L6 muscle cells

    J Biol Chem

    (2001)
  • T Hayashi et al.

    Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism

    Diabetes

    (2000)
  • LG Fryer et al.

    Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells

    Biochem J

    (2002)
  • HC Chen et al.

    Activation of the ERK pathway and atypical protein kinase C isoforms in exercise – and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR) – stimulated glucose transport

    J Biol Chem

    (2002)
  • MP Sajan et al.

    Sorbitol activates atypical protein kinase C and GLUT4 glucose transporter translocation/glucose transport through proline-rich tyrosine kinase-2, the extracellular signal-regulated kinase pathway and phospholipase D

    Biochem J

    (2002)
  • RV Farese

    Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states

    Am J Physiol Endocrinol Metab

    (2002)
  • H Sakoda et al.

    Activation of AMPK is essential for AICAR-induced glucose uptake by skeletal muscle but not adipocytes

    Am J Physiol Endocrinol Metab

    (2002)
  • IP Salt et al.

    5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes

    Diabetes

    (2000)
  • M Holgado-Madruga et al.

    A GRB2-associated docking protein in EGF- and insulin-receptor signalling

    Nature

    (1996)
  • KM Weidner et al.

    Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis

    Nature

    (1996)
  • D Kultz et al.

    Maintenance of genomic integrity in mammalian kidney cells exposed to hyperosmotic stress

    Comp Biochem Physiol A Mol Integr Physiol

    (2001)
  • SM Feller

    Crk family adaptors-signalling complex formation and biological roles

    Oncogene

    (2001)
  • CL Neudauer et al.

    Distinct cellular effects and interactions of the Rho-family GTPase TC10

    Curr Biol

    (1998)
  • Cited by (38)

    • Diet for the prevention and management of sarcopenia

      2023, Metabolism: Clinical and Experimental
    • D-mannitol modulates glucose uptake ex vivo; suppresses intestinal glucose absorption in normal and type 2 diabetic rats

      2019, Food Bioscience
      Citation Excerpt :

      Other amino acid residues formed hydrophobic interactions, which led to the stabilization of the complex (Fig. 6). Furthermore, a previous study reported that hyperosmolarity increases muscle glucose uptake by modulating AMP-kinase and/or inhibiting the endocytosis of GLUT-4 (Gual, Le Marchand-Brustel, & Tanti, 2003). Thus, the increasing osmolarity of the glucose uptake assay incubation solution (0.45–1.42 Osm/L), caused by the increasing concentration (2.5–20% w/v) of mannitol, may contribute to its dose-dependent glucose uptake effect, perhaps using a GLUT 4-associated mechanism.

    View all citing articles on Scopus
    View full text