J Appl Biomed 14:157-169, 2016 | DOI: 10.1016/j.jab.2016.01.004

Development of biocompatible nanogel for sustained drug release by overcoming the blood brain barrier in zebrafish model

Sivaji Kalaiarasia, Pitchai Arjuna, Soundarapandian Nandhagopala, Joseph Brijittaa, Appadurai Muthamil Iniyanb, Samuel Gnana Prakash Vincentb, Rajaretinam Rajesh Kannana,*
a Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai, Tamil Nadu, India
b International Centre for Nanobiotechnology, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, Tamil Nadu, India

A potential delivery system has to be fabricated for crossing the blood-brain barrier (BBB) to reach the brain fluid for effective delivery of drugs for any neurological disorders. The present study is aimed for the delivery of donepezil through functionalized PNIPAM nanogel by overcoming the BBB using zebrafish model. We had synthesized the poly N-isopropyl acrylamide nanogels with 20 nm size for sustained drug release. The entrapment of donepezil in the nanogel was quantified as 87.5% by HPLC and its sustained drug release pattern was achieved at 37 °C using Janus green dye release assay. Acetylcholineesterase inhibition assay for the donepezil conjugated nanogel (DCN) has confirmed thermoresponsive drug release by obtaining the donepezil peak at 9.3 min retention time in HPLC. Swim behavior and heart beat rates were found to be biocompatible for the functionalized nanogel DCN in zebrafish. Histological analysis revealed increased pial surface in anterior telenchepalon region of zebrafish brain for the DCN administered fishes. DCN treated embryos exhibited minor developmental deformities above 5 μg/ml and thus confirmed its minimal toxicity and its therapeutic efficiency. This study may shed light on the development of neurospecific nanogel for targeted and sustained drug release to brain by crossing the blood-brain barrier.

Keywords: Acetylcholinesterase inhibition; Biocompatibility; Blood brain barrier; Nanogel; PNIPAM; Zebrafish

Received: July 16, 2015; Revised: January 14, 2016; Accepted: January 21, 2016; Published: April 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kalaiarasi S, Arjun P, Nandhagopal S, Brijitta J, Iniyan AM, Vincent SGP, Kannan RR. Development of biocompatible nanogel for sustained drug release by overcoming the blood brain barrier in zebrafish model. J Appl Biomed. 2016;14(2):157-169. doi: 10.1016/j.jab.2016.01.004.
Download citation

References

  1. Ahmad, Z., Shah, A., Siddiq, M., Kraatz, H.B., 2014. Polymeric micelles as drug delivery vehicles. RSC Adv. 4, 17028-17038. Go to original source...
  2. Blaser, R.E., Rosemberg, D.B., 2012. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS One 7, 1-8. Go to original source...
  3. Brown, R.C., Mark, K.S., Egleton, R.D., Huber, J.D., Burroughs, A. R., Davis, T.P., 2002. Protection against hypoxia-induced increase in blood brain barrier permeability: role of tight junction proteins and NFkappaB. J. Cell Sci. 116, 693-700. Go to original source... Go to PubMed...
  4. Bruni, G., Lakhani, P., Kokel, D., 2014. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front. Pharmacol. 5, 1-7. Go to original source... Go to PubMed...
  5. Cheng, S.H., Wai, A.W.K., So, C.H., Wu, R.S.S., 2000. Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ. Toxicol. Chem. 19, 3024-3031. Go to original source...
  6. Collymore, C., Rasmussen, S., Tolwani, R.J., 2013. Gavaging adult zebrafish. J. Vis. Exp. 78, 1-5. Go to original source... Go to PubMed...
  7. Desai, B.S., Monahan, A.J., Carvey, P.M., Hendey, B., 2007. Blood- brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy. Cell Transplant. 16, 285-299. Go to original source... Go to PubMed...
  8. Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., Elkhayat, S.I., Bartels, B.K., Tien, A.K., Tien, D. H., Mohnot, S., Beeson, E., Glasgow, E., Amri, H., Zukowska, Z., Kalueff, A.V., 2009. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205, 38-44. Go to original source... Go to PubMed...
  9. Felice, B., Prabhakaran, M.P., Rodriguez, A.P., Ramakrishna, S., 2014. Drug delivery vehicles on a nano-engineering perspective. Mater. Sci. Eng. C Mater. Biol. Appl. 41, 178-195. Go to original source... Go to PubMed...
  10. Folgueira, M., Bayley, P., Navratilova, P., Becker, T.S., Wilson, S. W., Clarke, J.D., 2012. Morphogenesis underlying the development of the everted teleost telencephalon. Neural Dev. 7, 32. Go to original source... Go to PubMed...
  11. Gandhi, A., Paul, A., Sen, S.O., Sen, K.K., 2014. Studies on thermoresponsive polymers, phase behaviour, drug delivery and biomedical applications. Asian J. Pharm. Sci. 10, 99-107. Go to original source...
  12. Haraguchi, K., Takehisa, K., 2002. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 14, 1120-1124. Go to original source...
  13. Harper, C., Lawrence, C., 2010. The Laboratory Zebrafish. CRC Press, Boca Raton.
  14. Hasler, C.R., Owen, G.R., Brunner, W., Reinhart, W.H., 1998. Echinocytosis induced by haemodialysis. Nephrol. Dial. Transplant. 13, 3132-3137. Go to original source... Go to PubMed...
  15. Hurd, M.W., Cahill, G.M., 2002. Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. J. Biol. Rhythm. 17, 307-314. Go to original source... Go to PubMed...
  16. Jafari, B., Rafie, F., Davaran, S., 2011. Preparation and characterization of a novel smart polymeric hydrogel for drug delivery of insulin. Bioimpacts 1, 135-143. Go to PubMed...
  17. Jain, K.K., 2012. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond.) 7, 1225-1233. Go to original source... Go to PubMed...
  18. Joseph, W., James, E.F., Kenneth, S.J., Sandborg, R.R., Boxer, L.A., 1990. Calcium-dependent fusion of the plasma membrane fraction from human neutrophils with liposomes. Biochim. Biophys. Acta 1025, 1-9. Go to original source... Go to PubMed...
  19. Kannan, R.R., Vincent, S.G.P., 2012a. Cynodon dactylon and Sida acuta extracts impact on the function of the cardiovascular system in zebrafish embryos. J. Biomed. Res. 6, 90-97. Go to original source... Go to PubMed...
  20. Kannan, R.R., Vincent, S.G.P., 2012b. Rapid neurobehavioural analysis based on the effects of an acetylcholinesterase inhibitor from Tephrosia purpurea in zebrafish. Ann. Neurosci. 19, 8-13. Go to original source... Go to PubMed...
  21. Kari, G., Rodeck, U., Dicker, A.P., 2007. Zebrafish: an emerging model system for human disease and drug discovery. Clin. Pharmacol. Ther. 82, 70-80. Go to original source... Go to PubMed...
  22. Kato, N., Sakai, Y., Shibata, S., 2003. Wide range control of deswelling time for Thermosensitive Poly(N-isoporopyl acrylamide) gel treated by freeze-drying. Macromolecules 36, 961-963. Go to original source...
  23. Kirchmaier, B.C., Poon, K.L., Schwerte, T., Huisken, J., Winkler, C., Jungblut, B., Stainier, D.Y., Brand, T., 2012. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development. Dev. Biol. 363, 438-450. Go to original source... Go to PubMed...
  24. Kreuter, J., Michaelis, K., Dreis, S., Langer, K., 2005. The role of apolipoproteins on brain uptake of nanoparticle-bound drugs. In: 15th International Symposium on Microencapsulation, Parma (Italy), September 18-21, pp. 445-446.
  25. Liao, J.C., Fetcho, J.R., 2008. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish. J. Neurosci. 28, 12982-12992. Go to original source... Go to PubMed...
  26. Liew, K.B., Peh, K.K., Tan, Y.T., 2014. Effect of deprotenizing agent and quantification of donepezil hydrochloride in human plasma. Pak. J. Pharm. Sci. 27, 1303-1307.
  27. Lima, M.G., Maximino, C., Batista, E.O., Oliveira, K.R., Herculano, A.M., 2012. Nocifensive behavior in adult and larval zebrafish. In: Kalueff, A.V., Stewart, A.M. (Eds.), Zebrafish Protocols for Neurobehavioural Research. Series Neuromethods. Humana Press, New York, pp. 153-166. Go to original source...
  28. Maldonado, E., Hernandez, F., Lozano, C., Castro, M.E., Navarro, R.E., 2006. The zebrafish mutant vps18 as a model for vesicletraffic related hypopigmentation diseases. Pigment Cell Res. 19, 315-326. Go to original source... Go to PubMed...
  29. Menke, A.L., Spitsbergen, J.M., Wolterbeek, A.P., Woutersen, R.A., 2011. Normal anatomy and histology of the adult zebrafish. Toxicol. Pathol. 39, 759-775. Go to original source... Go to PubMed...
  30. Mohd, S.K., Gullapelly, R., Diwan, P.V., Shastri, N., 2014. Development and validation of RP-HPLC method for glimepiride and its application for a novel selfnanoemulsifying powder (SNEP) formulation analysis and dissolution study. J. Anal. Sci. Technol. 5, 1-8. Go to original source...
  31. OECD, 1992. Test Guideline 203. OECD Guideline for Testing Chemicals. Fish. Acute Toxicity test..
  32. Pedroso, G.L., Hammes, T.O., Escobar, T.D., Fracasso, L.B., Forgiarini, L.F., da Silveira, T.R., 2012. Blood collection for biochemical analysis in adult zebrafish. J. Vis. Exp. 63, 1-3. Go to original source... Go to PubMed...
  33. Santana, S., Rico, E.P., Burgos, J.S., 2012. Can zebrafish be used as animal model to study Alzheimer's disease? Am. J. Neurodegener. Dis. 1, 32-48.
  34. Scholpp, S., Poggi, L., Žigman, M., 2013. Brain on the stage - spotlight on nervous system development in zebrafish: EMBO practical course, KIT. Neural Dev. 8, 1-6. Go to original source... Go to PubMed...
  35. Shao, P., Wang, B., Wang, Y., Li, J., Zhang, Y., 2011. The application of thermosensitive nanocarriers in controlled drug delivery. J. Nanomater. 2011, 1-12. Go to original source... Go to PubMed...
  36. Sharma, H.S., Castellani, R.J., Smith, M.A., Sharma, A., 2012. The blood-brain barrier in Alzheimer's disease: novel therapeutic targets and nanodrug delivery. Int. Rev. Neurobiol. 102, 47-90. Go to original source... Go to PubMed...
  37. Speedie, N., Gerlai, R., 2008. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav. Brain Res. 188, 168-177. Go to original source... Go to PubMed...
  38. Suwalsky, M., Oyarce, K., Avello, M., Villena, F., Sotomayor, C.P., 2009. Human erythrocytes and molecular models of cell membranes are affected in vitro by Balbisia peduncularis (Amancay) extracts. Chem. Biol. Interact. 179, 413-418. Go to original source... Go to PubMed...
  39. Tan, C.C., Yu, J.T., Wang, H.F., Tan, M.S., Meng, X.F., Wang, C., Tan, L., 2014. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer's disease: a systematic review and meta-analysis. J. Alzheimers Dis. 41, 615-631. Go to original source... Go to PubMed...
  40. Tang, Z., Akiyama, Y., Yamato, M., Okano, T., 2010. Comb-type grafted poly(N-isopropyl acrylamide) gel modified surfaces for rapid detachment of cell sheet. Biomaterials 31, 7435-7443. Go to original source... Go to PubMed...
  41. Tekin, H., Sanchez, J.G., Tsinman, T., Langer, R., Khademhosseini, A., 2011. Thermoresponsive platforms for tissue engineering and regenerative medicine. AIChE J. 57, 3249-3258. Go to original source... Go to PubMed...
  42. Tierney, K.B., 2011. Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim. Biophys. Acta 12, 381-389. Go to original source... Go to PubMed...
  43. Vinogradov, S.V., Batrakova, E.V., Kabanov, A.V., 2004. Nanogels for oligonucleotide delivery to the brain. Bioconjug. Chem. 15, 50-60. Go to original source... Go to PubMed...
  44. Wong, K., Stewart, A., Gilder, T., Wu, N., Frank, K., Gaikwad, S., Suciu, C., Dileo, J., Utterback, E., Chang, K., Grossman, L., Cachat, J., Kalueff, A.V., 2010. Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain Res. 1348, 209-215. Go to original source... Go to PubMed...
  45. Xia, L.W., Xie, R., Ju, X.J., Wang, W., Chen, Q., Chu, L.Y., 2013. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 4, 1-11. Go to original source... Go to PubMed...
  46. Yim, H., Kent, M.S., 2004. Temperature-dependent conformational change of PNIPAM grafted chains at high surface density in water. Macromolecules 37, 1994-1997. Go to original source...
  47. Zhang, W., Mao, Z., Gao, C., 2014. Preparation of TAT peptidemodified poly(N-isopropylacrylamide) microgel particles and their cellular uptake, intracellular distribution, and influence on cytoviability in response to temperature change. J. Colloid Interface Sci. 434, 122-129. Go to original source... Go to PubMed...