J Appl Biomed 12:119-125, 2014 | DOI: 10.1016/j.jab.2013.12.001

Tissue profiling by nanogold-mediated mass spectrometry and artificial neural networks in the mouse model of human primary hyperoxaluria 1

Jan Hou¹kaa, Eladia María Peña-Méndezb, Juan R. Hernandez-Fernaudc, Eduardo Salidoc, Ale¹ Hampld,e, Josef Havela, Petr Vaòharad,*
a Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
b Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of La Laguna, La Laguna, Tenerife, Spain
c Rare Disease Center (CIBERER) and Biomedical Institute (CIBICAN), University La Laguna, Tenerife, Spain
d Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
e International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic

Correct assessment of tissue histopathology is a necessary prerequisite for any clinical diagnosis. Nowadays, classical methods of histochemistry and immunohistochemistry are complemented by various techniques adopted from molecular biology and bioanalytical chemistry. Mass spectrometry profiling or imaging offered a new level of tissue visualization in the last decade, revealing hidden patterns of tissue molecular organization. It can be adapted to diagnostic purposes to improve decisions on complex and morphologically not apparent diagnoses. In this work, we successfully combined tissue profiling by mass spectrometry with analysis by artificial neural networks to classify normal and diseased liver and kidney tissues in a mouse model of primary hyperoxaluria type 1. Lack of the liver l-alanine:glyoxylate aminotransferase catalyzing conversion of l-alanine and glyoxylate to pyruvate and glycine causes accumulation of oxalate salts in various tissues, especially urinary system, resulting in compromised renal function and finally end stage renal disease. As the accumulation of oxalate salts alters chemical composition of affected tissues, it makes it available for examination by bioanalytical methods. We demonstrated that the direct tissue MALDI-TOF MS combined with neural computing offers an efficient tool for diagnosis of primary hyperoxaluria type I and potentially for other metabolic disorders altering chemical composition of tissues.

Keywords: MALDI-TOF mass spectrometry; Primary hyperoxaluria I; Artificial neural networks; Diagnostics; Tissue profiling

Received: October 10, 2013; Revised: December 2, 2013; Accepted: December 12, 2013; Published: April 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hou¹ka J, Peña-Méndez EM, Hernandez-Fernaud JR, Salido E, Hampl A, Havel J, Vaòhara P. Tissue profiling by nanogold-mediated mass spectrometry and artificial neural networks in the mouse model of human primary hyperoxaluria 1. J Appl Biomed. 2014;12(2):119-125. doi: 10.1016/j.jab.2013.12.001.
Download citation

References

  1. Amato, F., González-Hernández, J., Havel, J., 2012. Artificial neural networks combined with experimental design: a ''soft'' approach for chemical kinetics. Talanta 93, 72-78. Go to original source... Go to PubMed...
  2. Amato, F., Lopez, A., Pena-Mendez, E., Vanhara, P., Hampl, A., Havel, J., 2013. Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11, 47-58. Go to original source...
  3. Armano, G., Mancosu, G., Milanesi, L., Orro, A., Saba, M., Vargiu, E., 2005. A hybrid genetic-neural system for predicting protein secondary structure. BMC Bioinf. 6 (Suppl. 4) S3. Go to original source... Go to PubMed...
  4. Arnold, M., 1996. Non-invasive glucose monitoring. Curr. Opin. Biotechnol. 7, 46-49. Go to original source... Go to PubMed...
  5. Barwad, A., Dey, P., Susheilia, S., 2012. Artificial neural network in diagnosis of metastatic carcinoma in effusion cytology. Cytometry B 82, 107-111. Go to original source... Go to PubMed...
  6. Bradley, B., 2012. Finding biomarkers is getting easier. Ecotoxicology 21, 631-636. Go to original source... Go to PubMed...
  7. Caldwell, R.L., Caprioli, R.M., 2005. Tissue profiling by mass spectrometry: a review of methodology and applications. Mol. Cell. Proteomics 4, 394-401. Go to original source... Go to PubMed...
  8. Cazares, L., Troyer, D., Wang, B., Drake, R., Semmes, O.J., 2011. MALDI tissue imaging: from biomarker discovery to clinical applications. Anal. Bioanal. Chem. 401, 17-27. Go to original source... Go to PubMed...
  9. Chan, K., Ling, S., Dillon, T., Nguyen, H., 2011. Diagnosis of hypoglycemic episodes using a neural network based rule discovery system. Expert Syst. Appl. 38, 9799-9808. Go to original source...
  10. Chaurand, P., Caprioli, R.M., 2002. Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis 23, 3125-3135. Go to original source...
  11. Chung, L., Shibli, S., Moore, K., Elder, E.E., Boyle, F.M., Marsh, D.J., Baxter, R.C., 2013. Tissue biomarkers of breast cancer and their association with conventional pathologic features. Br. J. Cancer 108, 351-360. Go to original source... Go to PubMed...
  12. Danpure, C.J., 2005. Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am. J. Nephrol. 25, 303-310. Go to original source... Go to PubMed...
  13. Dazzi, D., Taddei, F., Gavarini, A., Uggeri, E., Negro, R., Pezzarossa, A., 2001. The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method. J. Diabetes Complications 15, 80-87. Go to original source... Go to PubMed...
  14. Elveren, E., Yumuºak, N., 2011. Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J. Med. Syst. 35, 329-332. Go to original source... Go to PubMed...
  15. Fawcett, T.M., Irausquin, S.J., Simin, M., Valafar, H., 2013. An artificial neural network approach to improving the correlation between protein energetics and the backbone structure. Proteomics 13, 230-238. Go to original source... Go to PubMed...
  16. Ferguson, P.L., Smith, R.D., 2003. Proteome analysis by mass spectrometry. Annu. Rev. Biophys. Biomol. Struct. 32, 399-424. Go to original source... Go to PubMed...
  17. Giebel, R., Worden, C., Rust, S.M., Kleinheinz, G.T., Robbins, M., Sandrin, T.R., 2010. Microbial fingerprinting using matrixassisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv. Appl. Microbiol. 71, 149-184. Go to original source... Go to PubMed...
  18. Herring, K.D., Oppenheimer, S.R., Caprioli, R.M., 2007. Direct tissue analysis by matrix-assisted laser desorption ionization mass spectrometry: application to kidney biology. Semin. Nephrol. 27, 597-608. Go to original source... Go to PubMed...
  19. Hoppe, B., 2012. An update on primary hyperoxaluria. Nat. Rev. Nephrol. 8, 467-475. Go to original source... Go to PubMed...
  20. Hu, Q.Y., Huang, Y.S., Wang, Z.A., Tao, H.L., Liu, J.B., Yan, L., Wang, K.Z., 2012. Application of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry coupled with an artificial neural network model for the diagnosis of hepatocellular carcinoma. Hepatogastroenterology 59, 1902-1906. Go to original source... Go to PubMed...
  21. Lagarrigue, M., Becker, M., Lavigne, R., Deininger, S.O., Walch, A., Aubry, F., Suckau, D., Pineau, C., 2011. Revisiting rat spermatogenesis with MALDI imaging at 20-microm resolution. Mol. Cell. Proteomics 10 M110.005991. Go to original source... Go to PubMed...
  22. Leumann, E., Hoppe, B., 2001. The primary hyperoxalurias. J. Am. Soc. Nephrol. 12, 1986-1993. Go to original source... Go to PubMed...
  23. Pena-Mendez, E.M., Novotna, K., Gajdosova, D., Gonzalez, V., Havel, J., 2007. Characterization of humic substances of different origin by means of mass spectrometry and neural networks. Chemosphere 68, 2047-2053. Go to original source... Go to PubMed...
  24. Pietrowska, M., Widlak, P., 2012. MALDI-MS-based profiling of serum proteome: detection of changes related to progression of cancer and response to anticancer treatment. Int. J. Proteomics 2012, 926427. Go to original source... Go to PubMed...
  25. Raju, D.L., Cantarovich, M., Brisson, M.L., Tchervenkov, J., Lipman, M.L., 2008. Primary hyperoxaluria: clinical course, diagnosis, and treatment after kidney failure. Am. J. Kidney Dis. 51, e1-e5. Go to original source... Go to PubMed...
  26. Rumsby, G., Williams, E., Coulter-Mackie, M., 2004. Evaluation of mutation screening as a first line test for the diagnosis of the primary hyperoxalurias. Kidney Int. 66, 959-963. Go to original source... Go to PubMed...
  27. Salido, E.C., Li, X.M., Lu, Y., Wang, X., Santana, A., RoyChowdhury, N., Torres, A., Shapiro, L.J., Roy-Chowdhury, J., 2006. Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proc. Natl. Acad. Sci. U. S. A. 103, 18249-18254. Go to original source... Go to PubMed...
  28. Salido, E., Pey, A.L., Rodriguez, R., Lorenzo, V., 2012. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim. Biophys. Acta 1822, 1453-1464. Go to original source... Go to PubMed...
  29. Seeley, E.H., Caprioli, R.M., 2011. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol. 29, 136-143. Go to original source... Go to PubMed...
  30. Spelt, L., Andersson, B., Nilsson, J., Andersson, R., 2012. Prognostic models for outcome following liver resection for colorectal cancer metastases: a systematic review. Eur. J. Surg. Oncol. 38, 16-24. Go to original source... Go to PubMed...
  31. Wang, W., Chen, Q., Jiang, C., Yang, D., Liu, X., Xu, S., 2007. Onestep synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloid Surf. A-Physicochem. Eng. Asp. 301, 73-79. Go to original source...
  32. Williams, E.L., Acquaviva, C., Amoroso, A., Chevalier, F., CoulterMackie, M., Monico, C.G., Giachino, D., Owen, T., Robbiano, A., Salido, E., Waterham, H., Rumsby, G., 2009. Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Hum. Mutat. 30, 910-917. Go to original source... Go to PubMed...
  33. Wu, H.P., Yu, C.J., Lin, C.Y., Lin, Y.H., Tseng, W.L., 2009. Gold nanoparticles as assisted matrices for the detection of biomolecules in a high-salt solution through laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 875-882. Go to original source... Go to PubMed...
  34. Yan, H., Zheng, J., Jiang, Y., Peng, C., Xiao, S., 2008. Selecting critical clinical features for heart diseases diagnosis with a real-coded genetic algorithm. Appl. Soft. Comput. 8, 1105-1111. Go to original source...