Current Biology
Volume 17, Issue 3, 6 February 2007, Pages 230-236
Journal home page for Current Biology

Report
A Role for NuSAP in Linking Microtubules to Mitotic Chromosomes

https://doi.org/10.1016/j.cub.2006.11.050Get rights and content
Under an Elsevier user license
open archive

Summary

The spindle apparatus is a microtubule (MT)-based machinery that attaches to and segregates the chromosomes during mitosis and meiosis. Self-organization of the spindle around chromatin involves the assembly of MTs, their attachment to the chromosomes, and their organization into a bipolar array. One regulator of spindle self-organization is RanGTP. RanGTP is generated at chromatin and activates a set of soluble, Ran-regulated spindle factors such as TPX2, NuMA, and NuSAP [1]. How the spindle factors direct and attach MTs to the chromosomes are key open questions. Nucleolar and Spindle-Associated Protein (NuSAP) was recently identified as an essential MT-stabilizing and bundling protein that is enriched at the central part of the spindle 2, 3. Here, we show by biochemical reconstitution that NuSAP efficiently adsorbs to isolated chromatin and DNA and that it can directly produce and retain high concentrations of MTs in the immediate vicinity of chromatin or DNA. Moreover, our data reveal that NuSAP-chromatin interaction is subject to Ran regulation and can be suppressed by Importin α (Impα) and Imp7. We propose that the presence of MT binding agents such as NuSAP, which can be directly immobilized on chromatin, are critical for targeting MT production to vertebrate chromosomes during spindle self-organization.

CELLBIO

Cited by (0)