Current Biology
Volume 13, Issue 18, 16 September 2003, Pages 1653-1658
Journal home page for Current Biology

Report
Nuclear Localization and Transcriptional Repression Are Confined to Separable Domains in the Circadian Protein CRYPTOCHROME

https://doi.org/10.1016/j.cub.2003.08.033Get rights and content
Under an Elsevier user license
open archive

Abstract

Circadian rhythms are driven by molecular clocks composed of interlocking transcription/translation feedback loops 1, 2. CRYPTOCHROME (CRY) proteins are critical components of these clocks 3, 4 and repress the activity of the transcription factor heterodimer CLOCK/BMAL1 5, 6, 7. Unlike the homologous DNA repair enzyme 6-4 PHOTOLYASE, CRYs have extended carboxyl-terminal tails and cannot repair DNA damage (reviewed in [8]). Unlike mammals, Xenopus laevis contains both CRYs (xCRYs) and 6-4 PHOTOLYASE (xPHOTOLYASE), providing an excellent comparative tool to study CRY repressive function. We can extend findings to CRYs in general because xCRYs share high sequence homology with mammalian CRYs [9]. We show here that deletion of xCRYs' C-terminal domain produces proteins that are, like xPHOTOLYASE, unable to suppress CLOCK/BMAL1 activation. However, these truncations also cause the proteins to be cytoplasmically localized. A heterologous nuclear localization signal (NLS) restores the truncation mutants' nuclear localization and repressive activity. Our results demonstrate that the CRYs' C termini are essential for nuclear localization but not necessary for the suppression of CLOCK/BMAL1 activation; this finding indicates that these two functions reside in separable domains. Furthermore, the functional differences between CRYs and PHOTOLYASE can be attributed to the few amino acid changes in the conserved portions of these proteins.

Cited by (0)

1

Present address: Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324.

2

These authors contributed equally to this work.