Comptes Rendus
Electronic nematic susceptibility of iron-based superconductors
[Susceptibilité nématique électronique dans les supraconducteurs à base de fer]
Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 90-112.

Nous présentons dans cette revue nos récents résultats expérimentaux concernant la phase nématique électronique des composés BaFe2As2 dopés et FeSe. La susceptibilité nématique, extraite de nos mesures du module de cisaillement (obtenue par des essais de flexion trois points par dilatométrie capacitive) dans le cadre de la théorie de Landau, est comparée aux résultats obtenus par des mesures d'élastorésistivité et de spectroscopie Raman. FeSe est un composé particulièrement intéressant dans ce contexte car son diagramme de phase présente une large phase nématique i.e. une phase paramagnétique accompagnée d'une distorsion structurelle. La loi d'échelle reliant la susceptibilité nématique au taux de relaxation spin-réseau observé par RMN, prédite par la théorie nématique de spin, est observée pour les composés BaFe2As2 dopés en électrons et en trous. La relation complexe entre la susceptibilité nématique et les degrés de liberté orbitaux et de spin est discutée en détail.

We review our recent experimental results on the electronic nematic phase in electron- and hole-doped BaFe2As2 and FeSe. The nematic susceptibility is extracted from shear-modulus data (obtained using a three-point-bending method in a capacitance dilatometer) using Landau theory and is compared to the nematic susceptibility obtained from elastoresistivity and Raman data. FeSe is particularly interesting in this context, because of a large nematic, i.e., a structurally distorted but paramagnetic, region in its phase diagram. Scaling of the nematic susceptibility with the spin lattice relaxation rate from NMR, as predicted by the spin-nematic theory, is found in both electron- and hole-doped BaFe2As2, but not in FeSe. The intricate relationship of the nematic susceptibility to spin and orbital degrees of freedom is discussed.

Publié le :
DOI : 10.1016/j.crhy.2015.07.001
Keywords: Iron-based superconductors, Thermodynamic properties, Mechanical properties
Mot clés : Supraconducteurs à base de fer, Propriétés thermodynamiques, Propriétés mécaniques
Anna E. Böhmer 1 ; Christoph Meingast 1

1 Institut für Festkörperphysik, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
@article{CRPHYS_2016__17_1-2_90_0,
     author = {Anna E. B\"ohmer and Christoph Meingast},
     title = {Electronic nematic susceptibility of iron-based superconductors},
     journal = {Comptes Rendus. Physique},
     pages = {90--112},
     publisher = {Elsevier},
     volume = {17},
     number = {1-2},
     year = {2016},
     doi = {10.1016/j.crhy.2015.07.001},
     language = {en},
}
TY  - JOUR
AU  - Anna E. Böhmer
AU  - Christoph Meingast
TI  - Electronic nematic susceptibility of iron-based superconductors
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 90
EP  - 112
VL  - 17
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.07.001
LA  - en
ID  - CRPHYS_2016__17_1-2_90_0
ER  - 
%0 Journal Article
%A Anna E. Böhmer
%A Christoph Meingast
%T Electronic nematic susceptibility of iron-based superconductors
%J Comptes Rendus. Physique
%D 2016
%P 90-112
%V 17
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2015.07.001
%G en
%F CRPHYS_2016__17_1-2_90_0
Anna E. Böhmer; Christoph Meingast. Electronic nematic susceptibility of iron-based superconductors. Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 90-112. doi : 10.1016/j.crhy.2015.07.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.07.001/

[1] E. Fradkin; S.A. Kivelson; M.J. Lawler; J.P. Eisenstein; A.P. Mackenzie Nematic Fermi fluids in condensed matter physics, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), p. 153

[2] R.M. Fernandes; A.V. Chubukov; J. Schmalian What drives nematic order in iron-based superconductors?, Nat. Phys., Volume 10 (2014), pp. 97-104

[3] R.M. Fernandes; J. Schmalian Manifestations of nematic degrees of freedom in the magnetic, elastic, and superconducting properties of the iron pnictides, Supercond. Sci. Technol., Volume 25 (2012), p. 084005

[4] C. de la Cruz; Q. Huang; J.W. Lynn; J. Li; W. Ratcliff; J.L. Zarestky; H.A. Mook; G.F. Chen; J.L. Luo; N.L. Wang; P. Dai Magnetic order close to superconductivity in the iron-based layered LaO1xFxFeAs systems, Nature, Volume 453 (2008), pp. 899-902

[5] M. Rotter; M. Tegel; D. Johrendt; I. Schellenberg; W. Hermes; R. Pöttgen Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2, Phys. Rev. B, Volume 78 (2008), p. 020503

[6] T. Nomura; S.W. Kim; Y. Kamihara; M. Hirano; P.V. Sushko; K. Kato; M. Takata; A.L. Shluger; H. Hosono Crystallographic phase transition and high-Tc superconductivity in LaFeAsO:F, Supercond. Sci. Technol., Volume 21 (2008), p. 125028

[7] M.D. Lumsden; A.D. Christianson Magnetism in Fe-based superconductors, J. Phys. Condens. Matter, Volume 22 (2010), p. 203203

[8] A. Cano; M. Civelli; I. Eremin; I. Paul Interplay of magnetic and structural transitions in iron-based pnictide superconductors, Phys. Rev. B, Volume 82 (2010), p. 020408

[9] S. Avci; O. Chmaissem; E.A. Goremychkin; S. Rosenkranz; J.-P. Castellan; D.Y. Chung; I.S. Todorov; J.A. Schlueter; H. Claus; M.G. Kanatzidis; A. Daoud-Aladine; D. Khalyavin; R. Osborn Magnetoelastic coupling in the phase diagram of Ba1xKxFe2As2 as seen via neutron diffraction, Phys. Rev. B, Volume 83 (2011), p. 172503

[10] M.G. Kim; R.M. Fernandes; A. Kreyssig; J.W. Kim; A. Thaler; S.L. Bud'ko; P.C. Canfield; R.J. McQueeney; J. Schmalian; A.I. Goldman Character of the structural and magnetic phase transitions in the parent and electron-doped BaFe2As2 compounds, Phys. Rev. B, Volume 83 (2011), p. 134522

[11] N. Ni; M.E. Tillman; J.-Q. Yan; A. Kracher; S.T. Hannahs; S.L. Bud'ko; P.C. Canfield Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1xCox)2As2 single crystals, Phys. Rev. B, Volume 78 (2008), p. 214515

[12] J.-H. Chu; J.G. Analytis; C. Kucharczyk; I.R. Fisher Determination of the phase diagram of the electron-doped superconductor Ba(Fe1xCox)2As2, Phys. Rev. B, Volume 79 (2009), p. 014506

[13] C. Lester; J.-H. Chu; J.G. Analytis; S.C. Capelli; A.S. Erickson; C.L. Condron; M.F. Toney; I.R. Fisher; S.M. Hayden Neutron scattering study of the interplay between structure and magnetism in Ba(Fe1xCox)2As2, Phys. Rev. B, Volume 79 (2009), p. 144523

[14] A. Kreyssig; M.G. Kim; S. Nandi; D.K. Pratt; W. Tian; J.L. Zarestky; N. Ni; A. Thaler; S.L. Bud'ko; P.C. Canfield; R.J. McQueeney; A.I. Goldman Suppression of antiferromagnetic order and orthorhombic distortion in superconducting Ba(Fe0.0.961Rh0.039)2As2, Phys. Rev. B, Volume 81 (2010), p. 134512

[15] N. Ni; A. Thaler; J.Q. Yan; A. Kracher; E. Colombier; S.L. Bud'ko; P.C. Canfield; S.T. Hannahs Temperature versus doping phase diagrams for Ba(Fe1xTMx)2As2 (TM=Ni, Cu, Cu/Co) single crystals, Phys. Rev. B, Volume 82 (2010), p. 024519

[16] H. Luetkens; H.-H. Klauss; M. Kraken; F.J. Litterst; T. Dellmann; R. Klingeler; C. Hess; R. Khasanov; A. Amato; C. Baines; M. Kosmala; O.J. Schumann; M. Braden; J. Hamann-Borrero; N. Leps; A. Kondrat; G. Behr; J. Werner; B. Büchner The electronic phase diagram of the La(O1xFx)FeAs superconductor, Nat. Mater., Volume 8 (2009), pp. 305-309

[17] D.R. Parker; M.J.P. Smith; T. Lancaster; A.J. Steele; I. Franke; P.J. Baker; F.L. Pratt; M.J. Pitcher; S.J. Blundell; S.J. Clarke Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and nickel-doped NaFeAs using electron count, Phys. Rev. Lett., Volume 104 (2010), p. 057007

[18] C. Xu; M. Müller; S. Sachdev Ising and spin orders in the iron-based superconductors, Phys. Rev. B, Volume 78 (2008), p. 020501

[19] C. Fang; H. Yao; W.-F. Tsai; J. Hu; S.A. Kivelson Theory of electron nematic order in LaFeAsO, Phys. Rev. B, Volume 77 (2008), p. 224509

[20] S. Nandi; M.G. Kim; A. Kreyssig; R.M. Fernandes; D.K. Pratt; A. Thaler; N. Ni; S.L. Bud'ko; P.C. Canfield; J. Schmalian; R.J. McQueeney; A.I. Goldman Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1xCox)2As2 single crystals, Phys. Rev. Lett., Volume 104 (2010), p. 057006

[21] R.M. Fernandes; L.H. VanBebber; S. Bhattacharya; P. Chandra; V. Keppens; D. Mandrus; M.A. McGuire; B.C. Sales; A.S. Sefat; J. Schmalian Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors, Phys. Rev. Lett., Volume 105 (2010), p. 157003

[22] T.M. McQueen; A.J. Williams; P.W. Stephens; J. Tao; Y. Zhu; V. Ksenofontov; F. Casper; C. Felser; R.J. Cava Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se, Phys. Rev. Lett., Volume 103 (2009), p. 057002

[23] A.E. Böhmer; P. Burger; F. Hardy; T. Wolf; P. Schweiss; R. Fromknecht; M. Reinecker; W. Schranz; C. Meingast Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements, Phys. Rev. Lett., Volume 112 (2014), p. 047001

[24] A.E. Böhmer Competing phases in iron-based superconductors studied by high-resolution thermal-expansion and shear-modulus measurements, Fakultät für Physik, Karlsruhe Institute of Technology (KIT), Karlsruhe, 2014 http://digbib.ubka.uni-karlsruhe.de/volltexte/1000042623 (Ph.D. thesis, Diss.)

[25] J.-H. Chu; H.-H. Kuo; J.G. Analytis; I.R. Fisher Divergent nematic susceptibility in an iron arsenide superconductor, Science, Volume 337 (2012), pp. 710-712

[26] R.M. Fernandes; A.E. Böhmer; C. Meingast; J. Schmalian Scaling between magnetic and lattice fluctuations in iron pnictide superconductors, Phys. Rev. Lett., Volume 111 (2013), p. 137001

[27] A.E. Böhmer; T. Arai; F. Hardy; T. Hattori; T. Iye; T. Wolf; H.v. Löhneysen; K. Ishida; C. Meingast Origin of the tetragonal-to-orthorhombic phase transition in FeSe: a combined thermodynamic and NMR study of nematicity, Phys. Rev. Lett., Volume 114 (2015), p. 027001

[28] J.-H. Chu; J.G. Analytis; K. De Greve; P.L. McMahon; Z. Islam; Y. Yamamoto; I.R. Fisher In-plane resistivity anisotropy in an underdoped iron arsenide superconductor, Science, Volume 329 (2010), pp. 824-826

[29] J.J. Ying; X.F. Wang; T. Wu; Z.J. Xiang; R.H. Liu; Y.J. Yan; A.F. Wang; M. Zhang; G.J. Ye; P. Cheng; J.P. Hu; X.H. Chen Measurements of the anisotropic in-plane resistivity of underdoped FeAs-based pnictide superconductors, Phys. Rev. Lett., Volume 107 (2011), p. 067001

[30] M. Nakajima; S. Ishida; Y. Tomioka; K. Kihou; C.H. Lee; A. Iyo; T. Ito; T. Kakeshita; H. Eisaki; S. Uchida Effect of Co doping on the in-plane anisotropy in the optical spectrum of underdoped Ba(Fe1xCox)2As2, Phys. Rev. Lett., Volume 109 (2012), p. 217003

[31] S. Ishida; M. Nakajima; T. Liang; K. Kihou; C.H. Lee; A. Iyo; H. Eisaki; T. Kakeshita; Y. Tomioka; T. Ito; S. Uchida Anisotropy of the in-plane resistivity of underdoped Ba(Fe1xCox)2As2 superconductors induced by impurity scattering in the antiferromagnetic orthorhombic phase, Phys. Rev. Lett., Volume 110 (2013), p. 207001

[32] S. Ishida; M. Nakajima; T. Liang; K. Kihou; C.-H. Lee; A. Iyo; H. Eisaki; T. Kakeshita; Y. Tomioka; T. Ito; S.-i. Uchida Effect of doping on the magnetostructural ordered phase of iron arsenides: a comparative study of the resistivity anisotropy in doped BaFe2As2 with doping into three different sites, J. Am. Chem. Soc., Volume 135 (2013), pp. 3158-3163

[33] E.C. Blomberg; M.A. Tanatar; R.M. Fernandes; I.I. Mazin; B. Shen; H.-H. Wen; M.D. Johannes; J. Schmalian; R. Prozorov Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides, Nat. Commun., Volume 4 (2013) (Art. No. 1914)

[34] L. Liu; T. Mikami; S. Ishida; K. Koshiishi; K. Okazaki; T. Yoshida; H. Suzuki; M. Horio; L.C.C. Ambolode; J. Xu; H. Kumigashira; K. Ono; M. Nakajima; K. Kihou; C.H. Lee; A. Iyo; H. Eisaki; T. Kakeshita; S. Uchida; A. Fujimori In-plane electronic anisotropy in the antiferromagnetic-orthorhombic phase of isovalent-substituted Ba(Fe1xRux)2As2, 2015 | arXiv

[35] R.M. Fernandes; E. Abrahams; J. Schmalian Anisotropic in-plane resistivity in the nematic phase of the iron pnictides, Phys. Rev. Lett., Volume 107 (2011), p. 217002

[36] M.N. Gastiasoro; I. Paul; Y. Wang; P.J. Hirschfeld; B.M. Andersen Emergent defect states as a source of resistivity anisotropy in the nematic phase of iron pnictides, Phys. Rev. Lett., Volume 113 (2014), p. 127001

[37] C.-L. Song; Y.-L. Wang; Y.-P. Jiang; L. Wang; K. He; X. Chen; J.E. Hoffman; X.-C. Ma; Q.-K. Xue Suppression of superconductivity by twin boundaries in FeSe, Phys. Rev. Lett., Volume 109 (2012), p. 137004

[38] M.P. Allan; T.-M. Chuang; F. Massee; Y. Xie; N. Ni; S.L. Bud/'ko; G.S. Boebinger; Q. Wang; D.S. Dessau; P.C. Canfield; M.S. Golden; J.C. Davis Anisotropic impurity states, quasiparticle scattering and nematic transport in underdoped Ca(Fe1xCox)2As2, Nat. Phys., Volume 9 (2013), pp. 220-224

[39] E.P. Rosenthal; E.F. Andrade; C.J. Arguello; R.M. Fernandes; L.Y. Xing; X.C. Wang; C.Q. Jin; A.J. Millis; A.N. Pasupathy Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs, Nat. Phys., Volume 10 (2014), pp. 225-232

[40] Q. Deng; J. Xing; J. Liu; H. Yang; H.-H. Wen Anisotropic electronic mobilities in the nematic state of the parent phase NaFeAs, 2015 | arXiv

[41] A. Dusza; A. Lucarelli; F. Pfuner; J.-H. Chu; I.R. Fisher; L. Degiorgi Anisotropic charge dynamics in detwinned Ba(Fe1xCox)2As2, Europhys. Lett., Volume 93 (2011), p. 37002

[42] C. Mirri; A. Dusza; S. Bastelberger; J.-H. Chu; H.-H. Kuo; I.R. Fisher; L. Degiorgi Hysteretic behavior in the optical response of the underdoped Fe-arsenide Ba(Fe1xCox)2As2 in the electronic nematic phase, Phys. Rev. B, Volume 89 (2014), p. 060501

[43] C. Mirri; A. Dusza; S. Bastelberger; J.-H. Chu; H.-H. Kuo; I.R. Fisher; L. Degiorgi Nematic-driven anisotropic electronic properties of underdoped detwinned Ba(Fe1xCox)2As2 revealed by optical spectroscopy, Phys. Rev. B, Volume 90 (2014), p. 155125

[44] C. Mirri; A. Dusza; S. Bastelberger; M. Chinotti; J.-H. Chu; H.-H. Kuo; I.R. Fisher; L. Degiorgi Origin of the resistive anisotropy in the electronic nematic phase of BaFe2As2 revealed by optical spectroscopy, 2015 | arXiv

[45] H. Kuo; I.R. Fisher Effect of disorder on the resistivity anisotropy near the electronic nematic phase transition in pure and electron-doped BaFe2As2, Phys. Rev. Lett., Volume 112 (2014), p. 227001

[46] M. Yi; D. Lu; J.-H. Chu; J.G. Analytis; A.P. Sorini; A.F. Kemper; B. Moritz; S.-K. Mo; R.G. Moore; M. Hashimoto; W.-S. Lee; Z. Hussain; T.P. Devereaux; I.R. Fisher; Z.-X. Shen Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1xCox)2As2 above the spin density wave transition, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), pp. 6878-6883

[47] B. Valenzuela; E. Bascones; M.J. Calderón Conductivity anisotropy in the antiferromagnetic state of iron pnictides, Phys. Rev. Lett., Volume 105 (2010), p. 207202

[48] M. Daghofer; Q.-L. Luo; R. Yu; D.X. Yao; A. Moreo; E. Dagotto Orbital-weight redistribution triggered by spin order in the pnictides, Phys. Rev. B, Volume 81 (2010), p. 180514

[49] Z.P. Yin; K. Haule; G. Kotliar Magnetism and charge dynamics in iron pnictides, Nat. Phys., Volume 7 (2011), pp. 294-297

[50] S. Jiang; H.S. Jeevan; J. Dong; P. Gegenwart Thermopower as a sensitive probe of electronic nematicity in iron pnictides, Phys. Rev. Lett., Volume 110 (2013), p. 067001

[51] M. Fu; D.A. Torchetti; T. Imai; F.L. Ning; J.-Q. Yan; A.S. Sefat NMR search for the spin nematic state in a LaFeAsO single crystal, Phys. Rev. Lett., Volume 109 (2012), p. 247001

[52] L.W. Harriger; H.Q. Luo; M.S. Liu; C. Frost; J.P. Hu; M.R. Norman; P. Dai Nematic spin fluid in the tetragonal phase of BaFe2As2, Phys. Rev. B, Volume 84 (2011), p. 054544

[53] X. Lu; J.T. Park; R. Zhang; H. Luo; A.H. Nevidomskyy; Q. Si; P. Dai Nematic spin correlations in the tetragonal state of uniaxial-strained BaFe2xNixAs2, Science, Volume 345 (2014), pp. 657-660

[54] D. Inosov Spin fluctuations in iron pnictides and chalcogenides: from antiferromagnetism to superconductivity, C. R. Phys., Volume 16 (2015) (this issue)

[55] A. Patz; T. Li; S. Ran; R.M. Fernandes; J. Schmalian; S.L. Bud'ko; P.C. Canfield; I.E. Perakis; J. Wang Ultrafast observation of critical nematic fluctuations and giant magnetoelastic coupling in iron pnictides, Nat. Commun., Volume 5 (2014) (Article No. 3229)

[56] I.R. Fisher; L. Degiorgi; Z.X. Shen In-plane electronic anisotropy of underdoped ‘122’ Fe-arsenide superconductors revealed by measurements of detwinned single crystals, Rep. Prog. Phys., Volume 74 (2011), p. 124506

[57] J.P.C. Ruff; J.-H. Chu; H.-H. Kuo; R.K. Das; H. Nojiri; I.R. Fisher; Z. Islam Susceptibility anisotropy in an iron arsenide superconductor revealed by X-ray diffraction in pulsed magnetic fields, Phys. Rev. Lett., Volume 109 (2012), p. 027004

[58] S. Zapf; C. Stingl; K.W. Post; J. Maiwald; N. Bach; I. Pietsch; D. Neubauer; A. Löhle; C. Clauss; S. Jiang; H.S. Jeevan; D.N. Basov; P. Gegenwart; M. Dressel Persistent detwinning of iron-pnictide EuFe2As2 crystals by small external magnetic fields, Phys. Rev. Lett., Volume 113 (2014), p. 227001

[59] E.C. Blomberg; A. Kreyssig; M.A. Tanatar; R.M. Fernandes; M.G. Kim; A. Thaler; J. Schmalian; S.L. Bud'ko; P.C. Canfield; A.I. Goldman; R. Prozorov Effect of tensile stress on the in-plane resistivity anisotropy in BaFe2As2, Phys. Rev. B, Volume 85 (2012), p. 144509

[60] C. Dhital; Z. Yamani; W. Tian; J. Zeretsky; A.S. Sefat; Z. Wang; R.J. Birgeneau; S.D. Wilson Effect of uniaxial strain on the structural and magnetic phase transitions in BaFe2As2, Phys. Rev. Lett., Volume 108 (2012), p. 087001

[61] J. Hu; C. Setty; S. Kivelson Pressure effects on magnetically driven electronic nematic states in iron pnictide superconductors, Phys. Rev. B, Volume 85 (2012), p. 100507

[62] X. Ren; L. Duan; Y. Hu; J. Li; R. Zhang; H. Luo; P. Dai; Y. Li Nematic crossover in BaFe2As2 under uniaxial stress, 2015 (arXiv e-prints) | arXiv

[63] Y. Gallais; R.M. Fernandes; I. Paul; L. Chauvière; Y.-X. Yang; M.-A. Méasson; M. Cazayous; A. Sacuto; D. Colson; A. Forget Observation of incipient charge nematicity in Ba(Fe1xCox)2As2, Phys. Rev. Lett., Volume 111 (2013), p. 267001

[64] H. Kontani; T. Saito; S. Onari Origin of orthorhombic transition, magnetic transition, and shear-modulus softening in iron pnictide superconductors: analysis based on the orbital fluctuations theory, Phys. Rev. B, Volume 84 (2011), p. 024528

[65] H. Yamase; R. Zeyher Superconductivity from orbital nematic fluctuations, Phys. Rev. B, Volume 88 (2013), p. 180502

[66] M. Yoshizawa; S. Simayi Anomalous elastic behavior and its correlation with superconductivity in iron-based superconductor Ba(Fe1xCox)2As2, Mod. Phys. Lett. B, Volume 26 (2012), p. 1230011

[67] S. Margadonna; Y. Takabayashi; Y. Ohishi; Y. Mizuguchi; Y. Takano; T. Kagayama; T. Nakagawa; M. Takata; K. Prassides Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc=37K), Phys. Rev. B, Volume 80 (2009), p. 064506

[68] M. Bendele; A. Amato; K. Conder; M. Elender; H. Keller; H.-H. Klauss; H. Luetkens; E. Pomjakushina; A. Raselli; R. Khasanov Pressure induced static magnetic order in superconducting FeSe1x, Phys. Rev. Lett., Volume 104 (2010), p. 087003

[69] T. Imai; K. Ahilan; F.L. Ning; T.M. McQueen; R.J. Cava Why does undoped FeSe become a high-Tc superconductor under pressure?, Phys. Rev. Lett., Volume 102 (2009), p. 177005

[70] A.E. Böhmer; F. Hardy; F. Eilers; D. Ernst; P. Adelmann; P. Schweiss; T. Wolf; C. Meingast Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe, Phys. Rev. B, Volume 87 (2013), p. 180505

[71] J.-Y. Lin; Y.S. Hsieh; D.A. Chareev; A.N. Vasiliev; Y. Parsons; H.D. Yang Coexistence of isotropic and extended s-wave order parameter in FeSe as revealed by low-temperature specific heat, Phys. Rev. B, Volume 84 (2011), p. 220507(R)

[72] D. Chareev; E. Osadchii; T. Kuzmicheva; J.-Y. Lin; S. Kuzmichev; O. Volkova; A. Vasiliev Single crystal growth and characterization of tetragonal FeSe1x superconductors, CrystEngComm, Volume 15 (2013), pp. 1989-1993

[73] S.-H. Baek; D.V. Efremov; J.M. Ok; J.S. Kim; J. van den Brink; B. Büchner Orbital-driven nematicity in FeSe, Nat. Mater., Volume 14 (2015), pp. 210-214

[74] M.D. Watson; T.K. Kim; A.A. Haghighirad; N.R. Davies; A. McCollam; A. Narayanan; S.F. Blake; Y.L. Chen; S. Ghannadzadeh; A.J. Schofield; M. Hoesch; C. Meingast; T. Wolf; A.I. Coldea Emergence of the nematic electronic state in FeSe, Phys. Rev. B, Volume 91 (2015), p. 155106

[75] T. Shimojima; Y. Suzuki; T. Sonobe; A. Nakamura; M. Sakano; J. Omachi; K. Yoshioka; M. Kuwata-Gonokami; K. Ono; H. Kumigashira; A.E. Böhmer; F. Hardy; T. Wolf; C. Meingast; H.v. Löhneysen; H. Ikeda; K. Ishizaka Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe, Phys. Rev. B, Volume 90 (2014), p. 121111

[76] J. Maletz; V.B. Zabolotnyy; D.V. Evtushinsky; S. Thirupathaiah; A.U.B. Wolter; L. Harnagea; A.N. Yaresko; A.N. Vasiliev; D.A. Chareev; A.E. Böhmer; F. Hardy; T. Wolf; C. Meingast; E.D.L. Rienks; B. Büchner; S.V. Borisenko Unusual band renormalization in the simplest iron-based superconductor FeSe1x, Phys. Rev. B, Volume 89 (2014), p. 220506

[77] K. Nakayama; Y. Miyata; G. Phan; T. Sato; Y. Tanabe; T. Urata; K. Tanigaki; T. Takahashi Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor, Phys. Rev. Lett., Volume 113 (2014), p. 237001

[78] M.C. Rahn; R.A. Ewings; S.J. Sedlmaier; S.J. Clarke; A.T. Boothroyd Strong (π,0) spin fluctuations in β-FeSe observed by neutron spectroscopy, Phys. Rev. B, Volume 91 (2015), p. 180501

[79] Q. Wang; Y. Shen; B. Pan; Y. Hao; M. Ma; F. Zhou; P. Steffens; K. Schmalzl; T.R. Forrest; M. Abdel-Hafiez; D.A. Chareev; A.N. Vasiliev; P. Bourges; Y. Sidis; H. Cao; J. Zhao Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe, 2015 | arXiv

[80] G. Garbarino; A. Sow; P. Lejay; A. Sulpice; P. Toulemonde; M. Mezouar; M. Núñez-Regueiro High-temperature superconductivity (Tc onset at 34 K) in the high-pressure orthorhombic phase of FeSe, Europhys. Lett., Volume 86 (2009), p. 27001

[81] M. Bendele; A. Ichsanow; Y. Pashkevich; L. Keller; T. Strässle; A. Gusev; E. Pomjakushina; K. Conder; R. Khasanov; H. Keller Coexistence of superconductivity and magnetism in FeSe1x under pressure, Phys. Rev. B, Volume 85 (2012), p. 064517

[82] K. Miyoshi; K. Morishita; E. Mutou; M. Kondo; O. Seida; K. Fujiwara; J. Takeuchi; S. Nishigori Enhanced superconductivity on the tetragonal lattice in FeSe under hydrostatic pressure, J. Phys. Soc. Jpn., Volume 83 (2014), p. 013702

[83] T. Terashima; N. Kikugawa; S. Kasahara; T. Watashige; T. Shibauchi; Y. Matsuda; T. Wolf; A.E. Böhmer; F. Hardy; C. Meingast; H.v. Löhneysen; S. Uji Pressure-induced antiferromagnetic transition and phase diagram in FeSe, J. Phys. Soc. Jpn., Volume 84 (2015), p. 063701

[84] S. Knöner; D. Zielke; S. Köhler; B. Wolf; T. Wolf; L. Wang; A. Böhmer; C. Meingast; M. Lang Resistivity and magnetoresistance of FeSe single crystals under helium-gas pressure, Phys. Rev. B, Volume 91 (2015), p. 174510

[85] Y. Mizuguchi; F. Tomioka; S. Tsuda; T. Yamaguchi; Y. Takano Superconductivity at 27 K in tetragonal FeSe under high pressure, Appl. Phys. Lett., Volume 93 (2008), p. 152505

[86] S. Medvedev; T.M. McQueen; I.A. Troyan; T. Palasyuk; M.I. Eremets; R.J. Cava; S. Naghavi; F. Casper; V. Ksenofontov; G. Wortmann; C. Felser Electronic and magnetic phase diagram of β-Fe1.01 with superconductivity at 36.7 K under pressure, Nat. Mater., Volume 8 (2009), pp. 630-633

[87] R. Yu; Q. Si Antiferroquadrupolar and Ising-nematic orders of a frustrated bilinear–biquadratic Heisenberg model and implications for the magnetism of FeSe, 2015 | arXiv

[88] J.K. Glasbrenner; I.I. Mazin; H.O. Jeschke; P.J. Hirschfeld; R. Valentí Effect of magnetic frustration on nematicity and superconductivity in Fe chalcogenides, 2015 | arXiv

[89] F. Wang; S. Kivelson; D.-H. Lee Is FeSe a nematic quantum paramagnet?, 2015 | arXiv

[90] S. Mukherjee; A. Kreisel; P.J. Hirschfeld; B. Andersen Model of electronic structure and superconductivity in orbitally ordered FeSe, 2015 | arXiv

[91] A.V. Chubukov; R.M. Fernandes; J. Schmalian The origin of nematic order in FeSe, 2015 | arXiv

[92] S. Avci; O. Chmaissem; J. Allred; S. Rosenkranz; I. Eremin; A. Chubukov; D. Bugaris; D. Chung; M. Kanatzidis; J.-P. Castellan; J. Schlueter; H. Claus; D. Khalyavin; P. Manuel; A. Daoud-Aladine; R. Osborn Magnetically driven suppression of nematic order in an iron-based superconductor, Nat. Commun., Volume 5 (2014), p. 3845

[93] F. Waßer; A. Schneidewind; Y. Sidis; S. Wurmehl; S. Aswartham; B. Büchner; M. Braden Spin reorientation in Ba0.65Na0.35Fe2As2 studied by single-crystal neutron diffraction, Phys. Rev. B, Volume 91 (2015), p. 060505

[94] D.D. Khalyavin; S.W. Lovesey; P. Manuel; F. Krüger; S. Rosenkranz; J.M. Allred; O. Chmaissem; R. Osborn Symmetry of reentrant tetragonal phase in Ba1xNaxFe2As2: Magnetic versus orbital ordering mechanism, Phys. Rev. B, Volume 90 (2014), p. 174511

[95] J. Kang; X. Wang; A.V. Chubukov; R.M. Fernandes Interplay between tetragonal magnetic order, stripe magnetism, and superconductivity in iron-based materials, Phys. Rev. B, Volume 91 (2015), p. 121104

[96] M.N. Gastiasoro; B.M. Andersen Competing magnetic double-Q phases and superconductivity-induced re-entrance of C2 magnetic stripe order in iron pnictides, 2015 | arXiv

[97] K.M. Taddei et al. APS March Meeting 2015, Abstract L5.00006, 2015

[98] A.E. Böhmer; F. Hardy; L. Wang; T. Wolf; P. Schweiss; C. Meingast Superconductivity-induced reentrance of orthorhombic distortion in Ba1xKxFe2As2, 2014 | arXiv

[99] E. Salje Phase Transitions in Ferroelastic and Co-Elastic Crystals, Cambridge University Press, 1993 http://www.cambridge.org/ve/academic/subjects/earth-and-environmental-science/mineralogy-petrology-and-volcanology/phase-transitions-ferroelastic-and-co-elastic-crystals

[100] T. Goto; R. Kurihara; K. Araki; K. Mitsumoto; M. Akatsu; Y. Nemoto; S. Tatematsu; M. Sato Quadrupole effects in layered iron pnictide superconductor Ba(Fe0.9Co0.1)2As2, J. Phys. Soc. Jpn., Volume 80 (2011), p. 073702

[101] M. Yoshizawa; D. Kimura; T. Chiba; S. Simayi; Y. Nakanishi; K. Kihou; C.-H. Lee; A. Iyo; H. Eisaki; M. Nakajima; S.-i. Uchida Structural quantum criticality and superconductivity in iron-based superconductor Ba(Fe1xCox)2As2, J. Phys. Soc. Jpn., Volume 81 (2012), p. 024604

[102] S. Simayi; K. Sakano; H. Takezawa; M. Nakamura; Y. Nakanishi; K. Kihou; M. Nakajima; C.-H. Lee; A. Iyo; H. Eisaki; S. ichi Uchida; M. Yoshizawa Strange inter-layer properties of Ba(Fe1xCox)2As2 appearing in ultrasonic measurements, J. Phys. Soc. Jpn., Volume 82 (2013), p. 114604

[103] G.A. Zvyagina; T.N. Gaydamak; K.R. Zhekov; I.V. Bilich; V.D. Fil; D.A. Chareev; A.N. Vasiliev Acoustic characteristics of FeSe single crystals, Europhys. Lett., Volume 101 (2013), p. 56005

[104] S. Liang; A. Moreo; E. Dagotto Nematic state of pnictides stabilized by interplay between spin, orbital, and lattice degrees of freedom, Phys. Rev. Lett., Volume 111 (2013), p. 047004

[105] S. Liang; A. Mukherjee; N.D. Patel; C.B. Bishop; E. Dagotto; A. Moreo Diverging nematic susceptibility, physical meaning of T scale, and pseudogap in the spin fermion model for the pnictides, Phys. Rev. B, Volume 90 (2014), p. 184507

[106] W. Rehwald The study of structural phase transitions by means of ultrasonic experiments, Adv. Phys., Volume 22 (1973), pp. 721-755

[107] J.-P. Benoît; J. Berger; M. Krauzman; J.L. Godet Experimental observation of a soft mode in ammonium hydrogen oxalate hemihydrate by Brillouin scattering, J. Phys. France, Volume 47 (1986), pp. 815-819

[108] R.A. Cowley Acoustic phonon instabilities and structural phase transitions, Phys. Rev. B, Volume 13 (1976), pp. 4877-4885

[109] R. Folk; H. Iro; F. Schwabl Critical statics of elastic phase transitions, Z. Phys. B, Condens. Matter, Volume 25 (1976), pp. 69-81

[110] J. Als-Nielsen; R.J. Birgeneau Mean field theory, the Ginzburg criterion, and marginal dimensionality of phase transitions, Am. J. Phys., Volume 45 (1977), pp. 554-560

[111] A.V. Kityk; V.P. Soprunyuk; A. Fuith; W. Schranz; H. Warhanek Low-frequency elastic properties of the incommensurate ferroelastic [N(CH3)4]2CuCl4, Phys. Rev. B, Volume 53 (1996), pp. 6337-6344

[112] Physical Methods of Chemistry, vol. 7 (B.W. Rossiter; R.C. Baetzold, eds.), Wiley, New York, N.Y., 1991 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471534382.html

[113] C. Meingast; B. Blank; H. Bürkle; B. Obst; T. Wolf; H. Wühl; V. Selvamanickam; K. Salama Anisotropic pressure dependence of Tc in single crystal YBa2Cu3O7 via thermal expansion, Phys. Rev. B, Volume 41 (1990), pp. 11299-11304

[114] C. Meingast; F. Hardy; R. Heid; P. Adelmann; A. Böhmer; P. Burger; D. Ernst; R. Fromknecht; P. Schweiss; T. Wolf Thermal expansion and Grüneisen parameters of Ba(Fe1xCox)2As2—a thermodynamic quest for quantum criticality, Phys. Rev. Lett., Volume 108 (2012), p. 177004

[115] E.K.H. Salje; W. Schranz Low amplitude, low frequency elastic measurements using dynamic mechanical analyzer (DMA) spectroscopy, Z. Kristallogr., Volume 226 (2010), pp. 1-17

[116] Currently unpublished, measurements were made in Prof. W. Schranz's group in Vienna, 2015.

[117] D. Parshall; L. Pintschovius; J.L. Niedziela; J.-P. Castellan; D. Lamago; R. Mittal; T. Wolf; D. Reznik Close correlation between magnetic properties and the soft phonon mode of the structural transition in BaFe2As2 and SrFe2As2, Phys. Rev. B, Volume 91 (2015), p. 134426

[118] W. Schranz; H. Kabelka; A. Sarras; M. Burock Giant domain wall response of highly twinned ferroelastic materials, Appl. Phys. Lett., Volume 101 (2012), p. 141913

[119] W. Schranz; H. Kabelka; A. Tröster Superelastic softening of ferroelastic multidomain crystals, Ferroelectrics, Volume 426 (2012), pp. 242-250

[120] Y.P. Varshni Temperature dependence of the elastic constants, Phys. Rev. B, Volume 2 (1970), pp. 3952-3958

[121] S. Kasahara; H.J. Shi; K. Hashimoto; S. Tonegawa; Y. Mizukami; T. Shibauchi; K. Sugimoto; T. Fukuda; T. Terashima; A.H. Nevimdomskyy; Y. Matsuda Electronic nematicity above the structural and superconducting transition in BaFe2(As1xP2)2, Nature, Volume 486 (2012), p. 382

[122] A.E. Böhmer; P. Burger; F. Hardy; T. Wolf; P. Schweiss; R. Fromknecht; H.v. Löhneysen; C. Meingast; H.K. Mak; R. Lortz; S. Kasahara; T. Terashima; T. Shibauchi; Y. Matsuda Thermodynamic phase diagram, phase competition, and uniaxial pressure effects in BaFe2(As1xPx)2 studied by thermal expansion, Phys. Rev. B, Volume 86 (2012), p. 094521

[123] X. Luo; V. Stanev; B. Shen; L. Fang; X.S. Ling; R. Osborn; S. Rosenkranz; T.M. Benseman; R. Divan; W.-K. Kwok; U. Welp Antiferromagnetic and nematic phase transitions in BaFe2(As1xPx)2 studied by ac microcalorimetry and SQUID magnetometry, Phys. Rev. B, Volume 91 (2015), p. 094512

[124] H. Kontani; Y. Yamakawa Linear response theory for shear modulus C66 and Raman quadrupole susceptibility: evidence for nematic orbital fluctuations in Fe-based superconductors, Phys. Rev. Lett., Volume 113 (2014), p. 047001

[125] A. Pippard CXXIII. Thermodynamics of a sheared superconductor, Lond. Edinb. Dublin Philos. Mag. J. Sci., Volume 46 (1955), pp. 1115-1118

[126] R.M. Fernandes; A.J. Millis Nematicity as a probe of superconducting pairing in iron-based superconductors, Phys. Rev. Lett., Volume 111 (2013), p. 127001

[127] T. Terashima; N. Kikugawa; A. Kiswandhi; E.-S. Choi; J.S. Brooks; S. Kasahara; T. Watashige; H. Ikeda; T. Shibauchi; Y. Matsuda; T. Wolf; A.E. Böhmer; F. Hardy; C. Meingast; H.v. Löhneysen; M.-T. Suzuki; R. Arita; S. Uji Anomalous Fermi surface in FeSe seen by Shubnikov–de Haas oscillation measurements, Phys. Rev. B, Volume 90 (2014), p. 144517

[128] S. Kasahara; T. Watashige; T. Hanaguri; Y. Kohsaka; T. Yamashita; Y. Shimoyama; Y. Mizukami; R. Endo; H. Ikeda; K. Aoyama; T. Terashima; S. Uji; T. Wolf; H. von Löhneysen; T. Shibauchi; Y. Matsuda Field-induced superconducting phase of FeSe in the BCS–BEC cross-over, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), pp. 16309-16313

[129] F. Hardy, et al., 2015 (in preparation).

[130] F. Hardy; T. Wolf; R.A. Fisher; R. Eder; P. Schweiss; P. Adelmann; H.v. Löhneysen; C. Meingast Calorimetric evidence of multiband superconductivity in Ba(Fe0.925Co0.075)2As2 single crystals, Phys. Rev. B, Volume 81 (2010), p. 060501

[131] C. Meingast, 2015 (currently unpublished).

[132] F. Hardy; P. Burger; T. Wolf; R.A. Fisher; P. Schweiss; P. Adelmann; R. Heid; R. Fromknecht; R. Eder; D. Ernst; H.v. Löhneysen; C. Meingast Doping evolution of superconducting gaps and electronic densities of states in Ba(Fe1xCox)2As2 iron pnictides, Europhys. Lett., Volume 91 (2010), p. 47008

[133] H.-H. Kuo; M.C. Shapiro; S.C. Riggs; I.R. Fisher Measurement of the elastoresistivity coefficients of the underdoped iron arsenide Ba(Fe0.975Co0.025)2As2, Phys. Rev. B, Volume 88 (2013), p. 085113

[134] H.-H. Kuo; J.-H. Chu; S.A. Kivelson; I.R. Fisher Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors, 2015 | arXiv

[135] Y.-X. Yang; Y. Gallais; R.M. Fernandes; I. Paul; L. Chauvière; M.-A. Méasson; M. Cazayous; A. Sacuto; D. Colson; A. Forget Raman scattering as a probe of charge nematic fluctuations in iron based superconductors, JPS Conf. Proc., Volume 3 (2013), p. 015001

[136] Y. Gallais APS March Meeting, 2015 (Abstract Y51.00003)

[137] Y. Gallais, Private communication, 2015.

[138] Y. Gallais; I. Paul Charge nematicity and electronic Raman scattering in iron-based superconductors, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 113-139 ( this issue )

[139] F.L. Ning; K. Ahilan; T. Imai; A.S. Sefat; M.A. McGuire; B.C. Sales; D. Mandrus; P. Cheng; B. Shen; H.-H. Wen Contrasting spin dynamics between underdoped and overdoped Ba(Fe1xCox)2As2, Phys. Rev. Lett., Volume 104 (2010), p. 037001

[140] F.L. Ning; M. Fu; D.A. Torchetti; T. Imai; A.S. Sefat; P. Cheng; B. Shen; H.-H. Wen Critical behavior of the spin density wave transition in underdoped Ba(Fe1xCox)2As2 (x0.05): 75As NMR investigation, Phys. Rev. B, Volume 89 (2014), p. 214511

[141] A. Smerald; N. Shannon Angle-resolved NMR: quantitative theory of 75As T1 relaxation rate in BaFe2As2, Phys. Rev. B, Volume 84 (2011), p. 184437

[142] M. Hirano; Y. Yamada; T. Saito; R. Nagashima; T. Konishi; T. Toriyama; Y. Ohta; H. Fukazawa; Y. Kohori; Y. Furukawa; K. Kihou; C.-H. Lee; A. Iyo; H. Eisaki Potential antiferromagnetic fluctuations in hole-doped iron-pnictide superconductor Ba1xKxFe2As2 studied by 75As nuclear magnetic resonance measurement, J. Phys. Soc. Jpn., Volume 81 (2012), p. 054704

[143] Y. Nakai; T. Iye; S. Kitagawa; K. Ishida; S. Kasahara; T. Shibauchi; Y. Matsuda; H. Ikeda; T. Terashima Normal-state spin dynamics in the iron-pnictide superconductors BaFe2(As1xPx)2 and Ba(Fe1xCox)2As2 probed with NMR measurements, Phys. Rev. B, Volume 87 (2013), p. 174507

[144] B. Sales; M. McGuire; A. Sefat; D. Mandrus A semimetal model of the normal state magnetic susceptibility and transport properties of Ba(Fe1?xCox)2As2, Physica C, Supercond., Volume 470 (2010), pp. 304-308

[145] M. Ma; D. Yuan; Y. Wu; H. Zhou; X. Dong; F. Zhou Flux-free growth of large superconducting crystal of FeSe by traveling-solvent floating-zone technique, Supercond. Sci. Technol., Volume 27 (2014), p. 122001

[146] Y. Gallais; I. Paul; L. Chauviere; J. Schmalian Nematic resonance in the Raman response of iron-based superconductors, 2015 | arXiv

[147] S. Lederer; Y. Schattner; E. Berg; S.A. Kivelson Enhancement of superconductivity near a nematic quantum critical point, Phys. Rev. Lett., Volume 114 (2015), p. 097001

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Charge nematicity and electronic Raman scattering in iron-based superconductors

Yann Gallais; Indranil Paul

C. R. Phys (2016)


Spin fluctuations in iron pnictides and chalcogenides: From antiferromagnetism to superconductivity

Dmytro S. Inosov

C. R. Phys (2016)


Magnetic interactions in iron superconductors: A review

Elena Bascones; Belén Valenzuela; Maria José Calderón

C. R. Phys (2016)