Comptes Rendus
Non-volatile magnetic random access memories (MRAM)
[Mémoires magnétiques non-volatiles à access aleatoire]
Comptes Rendus. Physique, Volume 6 (2005) no. 9, pp. 1013-1021.

Les mémoires magnétiques à access aléatoire (MRAM) sont une nouvelle technologie de mémoires non volatiles cherchant à s'imposer comme une technologie majeure. Cet article fait un resumé des progrès les plus importants realisés au cours des 10 dernières années. Le mode de fonctionnement des MRAM est décrit ainsi que les défis qui subsistent encore pour leur réalisation. Les diverses stratégies d'écriture et leurs perspectives en termes de réduction de taille de cellule sont discutées.

Magnetic random access memories (MRAM) are a new non-volatile memory technology trying establish itself as a mainstream technology. This paper reviews briefly the most important progress realized in the past 10 years. Basic MRAM cell operation is described as well as the main subsisting design challenges. Special emphasis is placed on bit write strategies and their respective scaling perspectives.

Publié le :
DOI : 10.1016/j.crhy.2005.10.007
Keywords: MRAM, Non-volatile, Magnetic tunnel junction, Memory
Mot clés : MRAM, Jonctions tunnel magnétiques, Mémoire
Ricardo C. Sousa 1 ; I. Lucian Prejbeanu 1

1 Spintec (URA 2512 CEA/CNRS), 17, rue des Martyrs, 38054 Grenoble, France
@article{CRPHYS_2005__6_9_1013_0,
     author = {Ricardo C. Sousa and I. Lucian Prejbeanu},
     title = {Non-volatile magnetic random access memories {(MRAM)}},
     journal = {Comptes Rendus. Physique},
     pages = {1013--1021},
     publisher = {Elsevier},
     volume = {6},
     number = {9},
     year = {2005},
     doi = {10.1016/j.crhy.2005.10.007},
     language = {en},
}
TY  - JOUR
AU  - Ricardo C. Sousa
AU  - I. Lucian Prejbeanu
TI  - Non-volatile magnetic random access memories (MRAM)
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 1013
EP  - 1021
VL  - 6
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.10.007
LA  - en
ID  - CRPHYS_2005__6_9_1013_0
ER  - 
%0 Journal Article
%A Ricardo C. Sousa
%A I. Lucian Prejbeanu
%T Non-volatile magnetic random access memories (MRAM)
%J Comptes Rendus. Physique
%D 2005
%P 1013-1021
%V 6
%N 9
%I Elsevier
%R 10.1016/j.crhy.2005.10.007
%G en
%F CRPHYS_2005__6_9_1013_0
Ricardo C. Sousa; I. Lucian Prejbeanu. Non-volatile magnetic random access memories (MRAM). Comptes Rendus. Physique, Volume 6 (2005) no. 9, pp. 1013-1021. doi : 10.1016/j.crhy.2005.10.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.10.007/

[1] S. Tehrani; E. Chen; M. Durlam; M.D. Herrera; J.M. Slaughter; J. Shi; G. Kerszykowski High density submicron magnetoresistive random access memory, J. Appl. Phys., Volume 85 (1999), p. 5822

[2] P.K. Naji, M. Durlam, S. Tehrani, J. Calder, M.F. DeHerrera, A 256 kb 3.0 V 1T1MTJ nonvolatile magnetoresistive RAM, ISSCC Digest of Technical Papers (2001) 122–123

[3] R. Scheuerlein, A 10 ns read and write non-volatile memory array using a magnetic tunnel junction and a FET switch in each cell, ISSCC Digest of Technical Papers (2000) 128–129

[4] J.S. Moodera; L.R. Kinder; T.M. Wong; R. Meservey Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett., Volume 74 (1995), p. 3273

[5] J.S. Moodera; G. Mathon Spin polarized tunneling in ferromagnetic junctions, J. Magn. Magn. Mater. (1999), pp. 248-273

[6] J.S. Moodera; J. Nassar; G. Mathon Spin tunneling in ferromagnetic junctions, Annu. Rev. Mater. Sci., Volume 29 (1999), p. 381

[7] D. Wang; C. Nordman; J.M. Daughton; Z. Qian; J. Fink 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers, IEEE Trans. Magn., Volume 40 (2004) no. 4, pp. 2269-2271

[8] S. Yuasa; T. Nagahama; A. Fukushima; Y. Suzuki; K. Ando Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater., Volume 3 (2004), p. 868

[9] S.S. Parkin; C. Kaiser; A. Panchula; P.M. Rice; B. Hughes; M. Samant; S.-H. Yang Giant tunelling magnetoresistance at room temperature with MgO(100) tunnel barriers, Nat. Mater., Volume 3 (2004), p. 862

[10] H. Boeve; J. Das; L. Lagae; P. Peumans; C. Bruynseraede; K. Dessein; L.V. Melo; R.C. Sousa; P.P. Freitas; G. Borghs; J.D. Boeck Technology assessment for MRAM cells with magnet/semiconductor bits, IEEE Trans. Magn., Volume 35 (1999), p. 282

[11] J.M. Daughton Magnetic tunneling applied to memory, J. Appl. Phys., Volume 81 (1997), pp. 3758-3763

[12] J.J. Sun; P.P. Freitas; V. Soares Low resistance spin-dependent tunnel junctions deposited with a vacuum break and RF plasma oxidized, Appl. Phys. Lett., Volume 74 (1999), pp. 448-450

[13] W.J. Gallagher, J. Kaufman, S. Parkin, R. Scheuerlein, Magnetic memory array using magnetic tunnel junction devices in the memory cells, U.S. Patent 5640343, June 1997

[14] M. Durlam, S. Tehrani, J. Calder, M.F. DeHerrera, P.K. Naji, Non volatile RAM based on magnetic tunnel junction elements, ISSCC Digest of Technical Papers (2000) 130–131

[15] R.C. Sousa; P.P. Freitas; V. Chu; J.P. Conde Vertical integration of a spin dependent tunnel junction with an amorphous Si diode, Appl. Phys. Lett., Volume 74 (1999), p. 3893

[16] H. Boeve; R.C. Sousa; P.P. Freitas; J.D. Boeck; G. Borghs Electrical characteristics of magnetic memory cells comprising magnetic tunnel junctions and GaAs diodes, Electron. Lett., Volume 36 (2000) no. 21, pp. 1782-1783

[17] C. Tiusan; M. Chshiev; A. Iovan; V. da Costa; D. Stoeffler; T. Dimopoulos; K. Ounadjela Quantum coherent transport versus diode-like effect in semiconductor-free metal/insulator structure, Appl. Phys. Lett., Volume 79 (2001) no. 25, pp. 4231-4233

[18] F.Z. Wang Diode-free magnetic random access memory using spin-dependent tunneling effect, Appl. Phys. Lett., Volume 77 (2000) no. 13, pp. 2036-2038

[19] Y. Zheng; X. Wang; D. You; Y. Wu Switch-free read operation design and measurement of magnetic tunnel junction magnetic random access memory arrays, Appl. Phys. Lett., Volume 79 (2001) no. 17, pp. 2788-2790

[20] M. Yoshikawa; T. Kai; M. Amano; E. Kitagawa; T. Nagase; M. Nakayama; S. Takahashi; T. Ueda; T. Kishi; K. Tsuchida; S. Ikegawa; Y. Asao; H. Yoda; Y. Fukuzumi; K. Nagahara; H. Numata; H. Hada; N. Ishiwata; S. Tahara Bit yield improvement by precise control of stray fields from SAF pinned layers for high-density MRAMs, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P508

[21] J. Gadbois; J.-G. Zhu; W. Vavra; A. Hurst The effect of end and edge shape on the performance of pseudo-spin valve memory cells, IEEE Trans. Magn., Volume 34 (1998) no. 4, pp. 1066-1068

[22] M. Redjdal; P.W. Gross; A. Kazmi; F.B. Humphrey Switching dependence on fabrication accuracy of tapered ends of a single giant magnetoresistance memory cell in word disturb condition, J. Appl. Phys., Volume 85 (1999), pp. 6193-6195

[23] S.C. Oh; J.E. Lee; H.-J. Kim; Y.K. Ha; J.S. Bae; K.T. Nam; E. Kim; S.O. Park; H.S. Kim; U.-I. Chung; J.T. Moon Improvement of writing margin in MRAM with novel shape, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P509

[24] Y. Guo; P. Wang; M.-M. Chen; C. Horng; T. Min; L. Hong; O. Voegeli; R. Tong; P. Chen; S. Le; J. Chen; T. Zhong; L. Yang; G. Liu; Y. Chen; S. Shi; K. Yang; D. Tsang MRAM array with coupled soft-adjacent magnetic layer, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P506

[25] K. Inomata; N. Koike; T. Nozaki; S. Abe; N. Tezuka Size-independent spin switching field using synthetic antiferromagnets, Appl. Phys. Lett., Volume 82 (2003) no. 16, pp. 2667-2669

[26] K. Inomata; T. Nozaki; N. Tezuka; S. Sugimoto Magnetic switching field and giant magnetoresistance effect of multilayers with synthetic antiferromagnet free layers, Appl. Phys. Lett., Volume 81 (2002) no. 2, pp. 310-312

[27] W.C. Jeong; J.H. Park; G.H. Koh; G.T. Jeong; H.S. Jeong; K. Kim Switching field distribution in magnetic tunnel junctions with a synthetic antiferromagnetic free layer, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C905

[28] N.D. Rizzo; M. DeHerrera; J. Janesky; B. Engel; J. Slaughter; S. Tehrani Thermally activated magnetization reversal in submicron magnetic tunnel junctions for magnetoresistive random access memory, Appl. Phys. Lett., Volume 80 (2002) no. 13, pp. 2335-2337

[29] J. Janesky; N.D. Rizzo; B.N. Engel; S. Tehrani The switching properties of patterned synthetic ferrimagnetic structures, Appl. Phys. Lett., Volume 85 (2004) no. 12, pp. 2289-2291

[30] Y. Saito; H. Sugiyama; K. Inomata Thermal stability parameters in synthetic antiferromagnetic free layers in magnetic tunnel junctions, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C914

[31] L. Savchenko, B.N. Engel, N.D. Rizzo, M.F.D. Herrera, J.A. Janesky, U.S. Patent No. 6,545,906, April 2003

[32] D.C. Worledge Spin flop switching for magnetic random access memory, Appl. Phys. Lett., Volume 84 (2004) no. 22, pp. 4559-4561

[33] H. Fujiwara; S.-Y. Wang; M. Sun Critical-field curves for switching toggle mode magnetoresistance random access memory devices (invited), J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P507

[34] T. Yamamoto; H. Kano; Y. Higo; K. Ohba; T. Mizuguchi; M. Hosomi; K. Bessho; M. Hashimoto; H. Ohmori; T. Sone; K. Endo; S. Kubo; H. Narisawa; W. Otsuka; N. Okazaki; M. Motoyoshi; H. Nagao; T. Sagara Magnetoresistive random access memory operation error by thermally activated reversal (invited), J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P503

[35] T.J. Silva; C.S. Lee; T.M. Crawford; C.T. Rogers Inductive measurement of ultrafast magnetization dynamics in thin-film permalloy, J. Appl. Phys., Volume 85 (1999) no. 11, pp. 7849-7861

[36] E. Chen, S. Tehrani, M. Durlam, T. Zhu, Magnetic memory and method therefor, U.S. Patent 5659499, August 1997

[37] J. Wang; P.P. Freitas Low-current blocking temperature writing of double barrier magnetic random access memory cells, Appl. Phys. Lett., Volume 84 (2004) no. 6, pp. 945-947

[38] J.M. Daughton; A.V. Pohm Design of Curie point written magnetoresistance random access memory cells, J. Appl. Phys., Volume 93 (2003) no. 10, pp. 7304-7306

[39] R.I. Waite; A.V. Pohm; C.S. Comstock Thermal noise limitations to 2×20μm2 magnetoresistive memory element thresholds, J. Appl. Phys., Volume 63 (1988) no. 8, pp. 3151-3152

[40] I.L. Prejbeanu; W. Kula; K. Ounadjela; R.C. Sousa; O. Redon; B. Dieny; J.-P. Nozières Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions, IEEE Trans. Magn., Volume 40 (2004) no. 4, pp. 2625-2627

[41] C.-H. Lai; Z.-H. Wu; C.-C. Lin; P.H. Huang Thermally assisted-writing giant magnetoresistance with perpendicular magnetization, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C511

[42] R.S. Beech; J.A. Anderson; A.V. Pohm; J.M. Daughton Curie point written magnetoresistive memory, J. Appl. Phys., Volume 87 (2000) no. 9, pp. 6403-6405

[43] R.C. Sousa; I.L. Prejbeanu; D. Stanescu; B. Rodmacq; O. Redon; B. Dieny; J. Wang; P.P. Freitas Tunneling hot spots and heating in magnetic tunnel junctions, J. Appl. Phys., Volume 95 (2004) no. 11, pp. 6783-6785

[44] M. Kerekes; R.C. Sousa; I.L. Prejbeanu; O. Redon; U. Ebels; C. Baraduc; B. Dieny; J.-P. Nozières; P.P. Freitas; P. Xavier Dynamic heating in submicron size magnetic tunnel junctions with exchange biased storage layer, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10P501

[45] E. Girgis; J. Scheltem; J. Sci; J. Janesky; S. Tehrani; H. Goronkin Switching characteristics and magnetization vortices of thin-film cobalt in nanometer-scale patterned arrays, Appl. Phys. Lett., Volume 76 (2000) no. 25, pp. 3780-3782

[46] C.H. Back; R. Allenspach; W. Weber; S.S.P. Parkin; D. Weller; E.L. Garwin; H.C. Siegmann Minimum field strength in precessional magnetization reversal, Science, Volume 285 (1999) no. 6, p. 864

[47] Y. Acreman; C.H. Back; M. Buess; D. Pescia; V. Pokrosky Bifurcation in precessional switching, Appl. Phys. Lett., Volume 79 (2001), pp. 2228-2230

[48] T. Gerrits; H.A.M. van den Berg; J. Hohlfeld; L. Bär; T. Rasing Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping, Nature (London), Volume 418 (2002), pp. 509-512

[49] M. Bauer; J. Fassbender; B. Hillebrands; R.L. Stamps Switching behavior of a stoner particle beyond the relaxation time limit, Phys. Rev. B, Volume 61 (2000) no. 5, pp. 3410-3416

[50] S. Kaka; S.E. Russek Precessional switching of submicrometer spin valves, Appl. Phys. Lett., Volume 80 (2002) no. 16, pp. 2958-2960

[51] H.W. Schumacher; C. Chappert; R.C. Sousa; P.P. Freitas; J. Miltat Quasiballistic magnetization reversal, Phys. Rev. Lett., Volume 90 (2003), pp. 017204-017207

[52] H.W. Schumacher; C. Chappert; R.C. Sousa; P.P. Freitas; J. Miltat; J. Ferré Precessional switching of the magnetization in microscopic tunnel junctions (invited), J. Appl. Phys., Volume 93 (2003) no. 10, pp. 7290-7294

[53] T. Devolder; C. Chappert Cell writing selection when using precessional switching in a magnetic random access memory, J. Appl. Phys., Volume 95 (2004) no. 4, pp. 1933-1941

[54] C. Maunoury; T. Devolder; C.K. Lim; P. Crozat; C. Chappert; J. Wecker; L. Bär Precessional direct-write switching in micrometer-sized magnetic tunnel junctions, J. Appl. Phys., Volume 97 (2005), pp. 074503-074508

[55] J. Slonczewski Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., Volume 159 (1996) no. 1–2, p. L1-L7

[56] L. Berger Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, Volume 54 (1996), p. 9353

[57] F.J. Albert; J.A. Katine; R.A. Buhrman; D.C. Ralph Spin-polarized current switching of a Co thin film nanomagnet, Appl. Phys. Lett., Volume 77 (2000) no. 23, pp. 3809-3811

[58] J. Grollier; V. Cros; A. Hamzic; J.M. George; H. Jaffrès; A. Fert; G. Faini; J.B. Youssef; H. Legall Spin-polarized current induced switching in Co/Cu/Co pillars, Appl. Phys. Lett., Volume 78 (2001) no. 23, p. 3663

[59] J.A. Katine; F.J. Albert; R.A. Buhrman; E.B. Myers; D.C. Ralph Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars, Phys. Rev. Lett., Volume 84 (2000) no. 14, pp. 3149-3152

[60] Y. Huai; F. Albert; P. Nguyen; M. Pakala; T. Valet Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions, Appl. Phys. Lett., Volume 84 (2004), pp. 3118-3120

[61] L. Berger Multilayer configuration for experiments of spin precession induced by a dc current, J. Appl. Phys., Volume 93 (2003), pp. 7693-7695

[62] K. Yagami; A.A. Tulapurkar; A. Fukushima; Y. Suzuki Estimation of thermal durability and intrinsic critical currents of magnetization switching for spin-transfer based magnetic random access memory, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C707

[63] Y. Jiang; T. Nozaki; S. Abe; T. Ochiai; A. Hirohata; N. Tezuka; K. Inomata Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve, Nat. Mater., Volume 3 (2004), pp. 361-364

[64] A.A. Tulapurkar; T. Devolder; K. Yagami; P. Crozat; C. Chappert; A. Fukushima; Y. Suzuki Subnanosecond magnetization reversal in magnetic nanopillars by spin angular momentum transfer, Appl. Phys. Lett., Volume 85 (2004), pp. 5358-5360

[65] J.Z. Sun Spin-current interaction with a monodomain magnetic body: A model study, Phys. Rev. B, Volume 62 (2000), pp. 570-578

[66] J. Wang; P.P. Freitas; E. Snoeck Low-resistance spin-dependent tunnel junctions with ZrAlOx barriers, Appl. Phys. Lett., Volume 79 (2001) no. 27, pp. 4553-4555

[67] Y. Jiang; S. Abe; T. Ochiai; T. Nozaki; A. Hirohata; N. Tezuka; K. Inomata Effective reduction of critical current for current-induced magnetization switching by a Ru layer insertion in an exchange-biased spin valve, Phys. Rev. Lett., Volume 92 (2004), pp. 167204-167207

[68] H. Meng; J. Wang; Z. Diao; J.-P. Wang Low resistance spin-dependent magnetic tunnel junction with high breakdown voltage for current-induced-magnetization-switching devices, J. Appl. Phys., Volume 97 (2005) no. 10, p. 10C926

[69] E.B. Myers; F.J. Albert; J.C. Sankey; E. Bonet; R.A. Buhrman; D. Ralph Thermally activated magnetic reversal induced by a spin-polarized current, Phys. Rev. Lett., Volume 89 (2002), pp. 196801-196804

[70] K. Yagami; A.A. Tulapurkar; A. Fukushima; Y. Suzuki Low-current spin-transfer switching and its thermal durability in a low-saturation-magnetization nanomagnet, Appl. Phys. Lett., Volume 85 (2004) no. 23, pp. 5634-5636

[71] H. Kano, K. Bessho, Y. Higo, K. Ohba, M. Hashimoto, T. Mizuguchi, M. Hosomi, MRAM with improved magnetic tunnel junction material, in: INTERMAG Europe 2002, Digest of Technical Papers (2002) BB4

[72] B.C. Choi; M. Belov; W.K. Hiebert; G.E. Ballentine; M.R. Freeman Ultrafast magnetization reversal dynamics investigated by time domain imaging, Phys. Rev. Lett., Volume 86 (2001), pp. 728-731

[73] T. Devolder; C. Chappert; P. Crozat; A. Tulapurkar; Y. Suzuki; J. Miltat; K. Yagami Precharging strategy to accelerate spin-transfer switching below the nanosecond, Appl. Phys. Lett., Volume 86 (2005), pp. 062505-062507

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Spin Transfer Torque: a new method to excite or reverse a magnetization

Vincent Cros; Olivier Boulle; J. Grollier; ...

C. R. Phys (2005)


Spin dependent transport: GMR & TMR

Alain Schuhl; Daniel Lacour

C. R. Phys (2005)