Skip to main content
Log in

Interaction mechanism between coal combustion products and coke in raceway of blast furnaces

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The interaction mechanism between the combustion products of pulverized coal injected and coke in the raceway of blast furnace was studied through thermodynamic calculation and experiments. The results indicated that additives significantly affected the melting property of coal ash in high temperature zone. Although the unburnt char, raw coal ash, and catalyzed coal ash failed to wet the coke surface, the wettability of the catalyzed coal ash on the coke was greater than that of the raw coal ash. Since the unburnt char had weak reaction with the coke surface, it showed little influence on the surface morphology of the coke. The interaction between the raw coal ash and the coke gave rise to the increase in the pore size on the coke surface. However, the raw coal ash only affected the coke surface and the entrances of the pores owing to its poor fluidity. After being melted, the catalyzed coal ash was expected to immerge into the inside part of the coke and then react with the coke, resulting in an expansion and increase of coke cavities. The raw coal ash and the unburnt char reduced the coke reactivity, while the catalyzed coal ash improved the coke reactivity. Thereinto, the coal ash containing Fe2O3 exhibited a larger influence on the reactivity than that containing CaO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Jiang, J. Zhang, J. Fu, J. Chang, J. Li, J. Iron Steel Res. Int. 18 (2011) No. 3, 6–12.

    Article  Google Scholar 

  2. K. Nozawa, A. Kasai, Y. Matsui, S. Kitayama, S. Kitano, K. Shibata, ISIJ Int. 51 (2011) No. 8, 1336–1343.

    Article  Google Scholar 

  3. S. Du, W. Chen, Int. Commun. Heat and Mass Transfer 33 (2006) No. 3, 327–334.

    Article  Google Scholar 

  4. H. Nogami, S. Pintowantoro, J. Yagi, ISIJ Int. 45 (2005) No. 10, 1489–1495.

    Article  Google Scholar 

  5. W. Xu, X. Wu, J. Chen, H. Qian, J. Lin, Iron and Steel 38 (2003) No. 3, 4–7 (in Chinese).

    Google Scholar 

  6. K. Yamaguchi, T. Uno, T. Yammoto, H. Ueno, N. Kon-no, S. Matsuzki, Tetsu-to-Hagane 82 (1996) No. 8, 641–646 (in Japanese).

    Article  Google Scholar 

  7. H. Ueno, K. Yamaguchi, K. Tamura, ISIJ Int. 33 (1993) No. 6, 640–645.

    Article  Google Scholar 

  8. K. Khairil, D. Kamihashira, I. Narus, Proc. Combust. Inst. 29 (2002) No. 1, 805–810.

    Article  Google Scholar 

  9. W. Lu, in: Proceedings of the McMaster Iron and Steelmaking Symposium, McMaster University, Hamilton, Ontario, Canada, 1991, pp. 14–16.

    Google Scholar 

  10. H. W. Gudenau, D. Senk, K. Fukada, A. Babich, C. Froehling, L. L. Garcia, A. Formoso, F. J. Alguacil, A. Cores, Revista de Metalurgia 39 (2003) No. 5, 367–377.

    Article  Google Scholar 

  11. Q. Y. Yu, J. Cao, F. M. Shen, Baosteel Technol. (2006) Suppl. 1, 31–34 (in Chinese).

  12. B. Zhang, Z. Zhu, D. Zou, Iron and Steel 29 (1994) No. 3, 22–26 (in Chinese).

    Google Scholar 

  13. I. Naruse, K. Nakayama, A. Higuchi, ISIJ Int. 40 (2000) No. 8, 744–748.

    Article  Google Scholar 

  14. C. Zou, L. Wen, S. Zhang, C. Bai, G. Yin, Fuel Process. Technol. 119 (2014) No. 1, 136–145.

    Article  Google Scholar 

  15. A. Babich, S. Yaroshevskii, A. Formoso, A. Isidro, S. Ferreira, A. Cores, L. Garcia, ISIJ Int. 36 (1996) No. 10, 1250–1258.

    Article  Google Scholar 

  16. X. Gong, Z. Guo, Z. Wang, Combust. Flame 157 (2010) No. 2, 351–356.

    Article  Google Scholar 

  17. X. Gong, Z. Guo, Z. Wang, Energy 35 (2010) No. 2, 506–511.

    Article  Google Scholar 

  18. D. Senk, H. Gudenau, S. Geimer, ISIJ Int. 46 (2006) No. 46, 1745–1751.

    Article  Google Scholar 

  19. A. Wijayanta, M. Alam, K. Nakaso, J. Fukai, K. Kunitom, Fuel Process. Technol. 117 (2014) No. 1, 53–59.

    Article  Google Scholar 

  20. J. A. Castro, G. Mattos Araújo, I. Oliveira da Mota, J. Mater. Res. Technol. 2 (2013) No. 4, 308–314.

    Article  Google Scholar 

  21. S. Du, W. Chen, J. Lucas, Energy Convers. Manage. 48 (2007) No. 1, 2069–2076.

    Article  Google Scholar 

  22. J. Zhang, S. Ren, B. Su, Y. Lin, S. Long, J. Iron Steel Res. Int. 19 (2012) No. 2, 12–16.

    Article  Google Scholar 

  23. C. Goni, S. Hell, X. Garcia, Fuel 82 (2003) No. 15–17, 2087–2095.

    Article  Google Scholar 

  24. S. Ren, J. Zhang, W. Liu, C. Tian, Y. Yuan, J. Liu, J. Iron Steel Res. 24 (2012) No. 10, 11–15 (in Chinese).

    Google Scholar 

  25. B. Gao, J. Zhang, H. Zuo, C. Qi, Y. Rong, Z. Wang, J. Iron Steel Res. Int. 21 (2014) No. 8, 723–728.

    Article  Google Scholar 

  26. S. Zhang, L. Wen, K. Wang, C. Zou, J. Xu, J. Iron Steel Res. Int. 22 (2015) No. 10, 897–904.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, C., Wen, Ly., Zhao, Jx. et al. Interaction mechanism between coal combustion products and coke in raceway of blast furnaces. J. Iron Steel Res. Int. 24, 8–17 (2017). https://doi.org/10.1016/S1006-706X(17)30003-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30003-1

Key words

Navigation