Skip to main content
Log in

Wear Behavior of Aluminum Matrix Hybrid Composites Fabricated through Friction Stir Welding Process

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Effects of friction stir processing (FSP) parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated. A mathematical formulation was derived to calculate the wear volume loss of the composites. The experimental results were contrasted with the results of the proposed model. The influences of sliding distance, tool traverse and rotational speeds, as well as graphite (Gr) and titanium carbide (TiC) volume fractions on the wear volume loss of the composites were also investigated using the prepared formulation. The results demonstrated that the wear volume loss of the composites significantly increased with increasing sliding distance, tool traverse speed, and rotational speed; while the wear volume loss decreased with increasing volume fraction of the reinforcements. A minimum wear volume loss for the hybrid composites with complex reinforcements was specified at the inclusion ratio of 50% TiG+50% Al2O3 because of improved lubricant ability, as well as resistance to brittleness and wear. New possibilities to develop wear-resistant aluminum-based composites for different industrial applications were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Das, P. Mishra, S. Singh, S. Pattanaik, Int. J. Mech. Mater. Eng. 9 (2014) 1–15.

    Article  Google Scholar 

  2. C. M. L. Wu, G. W. Han, Mater. Charact. 58 (2007) 416–422.

    Article  Google Scholar 

  3. S. P. Rawal, JOM 53 (2001) 14–17.

    Article  Google Scholar 

  4. J. Hooker, P. Doorbar, Mater. Sci. Technol. 16 (2000) 725–731.

    Article  Google Scholar 

  5. C. Leyens, M. Peters, Titanium and Titanium Alloys, Wiley Online Library, 2003.

  6. A. Macke, B. F. Schultz, P. Rohatgi, Adv. Mater. Processes 170 (2012) 19–23.

    Google Scholar 

  7. T. V. Christy, N. Murugan, S. Kumar, J. Min. Mater. Charact. Eng. 9 (2010) 57–65.

    Google Scholar 

  8. D. Lu, Y. Jiang, R. Zhou, Wear 305 (2013) 286–290.

    Article  Google Scholar 

  9. K. M. Shorowordi, A. S. M. A. Haseeb, J. P. Celis, Wear 261 (2006) 634–641.

    Article  Google Scholar 

  10. N. Murugan. B. Ashok Kumar, Mater. Des. 51 (2013) 998–1007.

    Article  Google Scholar 

  11. N. Yuvaraj, S. Aravindan, J. Mater. Res. Technol. 4 (2015) 398–410.

    Article  Google Scholar 

  12. X. Tong, Thermally Conductive Ceramic Matrix Composites, Advanced Materials for Thermal Management of Electronic Packaging, Springer, New York, 2011, pp. 277–304.

    Google Scholar 

  13. S. R. Anvari, F. Karimzadeh, M. H. Enayati, Wear 304 (2013) 144–151.

    Article  Google Scholar 

  14. K. Funatani, K. Kurosawa, Adv. Mater. Processes 146 (1994) 27–30.

    Google Scholar 

  15. M. Skibo, P. Morris, D. Lloyd, Proceedings of the World Materials Congress, Chicago, 1988, pp. 257–262.

  16. D. Huda, M. E. Baradie, M. Hashmi, J. Mater. Process. Technol. 37 (1993) 513–528.

    Article  Google Scholar 

  17. D. C. Hofmann, K. S. Vecchio, Mater. Sci. Eng. A 402 (2005) 234–241.

    Article  Google Scholar 

  18. A. Dolatkhah, P. Golbabaei, M. K. Besharati Givi, F. Molaiekiya, Mater. Des. 37 (2012) 458–464.

    Article  Google Scholar 

  19. M. Raaft, T. S. Mahmoud, H. M. Zakaria, T. A. Khalifa, Mater. Sci. Eng. A 528 (2011) 5741–5746.

    Article  Google Scholar 

  20. H. I. Kurt, Composites Part B: Engineering 93 (2016) 26–34.

    Article  Google Scholar 

  21. R. Nandan, T. DebRoy, H. K. D. H. Bhadeshia, Progress in Materials Science 53 (2008) 980–1023.

    Article  Google Scholar 

  22. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Mater. Sci. Eng. A 419 (2006) 344–348.

    Article  Google Scholar 

  23. E. R. I. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi, Sci. Technol. Weld. Join. 14 (2009) 413–425.

    Article  Google Scholar 

  24. S. J. Vijay, N. Murugan, Mater. Des. 31 (2010) 3585–3589.

    Article  Google Scholar 

  25. R. Ashok Kumar, M. Thansekhar, Advanced Materials Research, Trans. Tech. Publ. 2014, pp. 586–591.

  26. S. M. Aktarer, D. M. Sekban, O. Saray, T. Kucukomeroglu, Z. Y. Ma, G. Purcek, Mater. Sci. Eng. A 636 (2015) 311–319.

    Article  Google Scholar 

  27. Z. Y. Ma, S. R. Sharma, R. S. Mishra, Scripta Mater. 54 (2006) 1623–1626.

    Article  Google Scholar 

  28. Y. Bozkurt, H. Uzun, S. Salman, J. Compos. Mater. 45 (2011) 2237–2245.

    Article  Google Scholar 

  29. D. Aruri, K. Adepu, K. Adepu, K. Bazavada, J. Mater. Res. Technol. 2 (2013) 362–369.

    Article  Google Scholar 

  30. A. Devaraju, A. Kumar, B. Kotiveerachari, Trans. Nonferrous Met. Soc. China 23 (2013) 1275–1280.

    Article  Google Scholar 

  31. R. Sathiskumar, T. Dinaharan, N. Murugan, S. J. Vijay, Trans. Nonferrous Met. Soc. China 25 (2015) 95–102.

    Article  Google Scholar 

  32. A. Thangarasu, N. Murugan, I. Dinaharan, S. J. Vijay, Archives of Civil and Mechanical Engineering 15 (2015) 324–334.

    Article  Google Scholar 

  33. C. M. Rejil, I. Dinaharan, S. J. Vijay, N. Murugan, Mater. Sci. Eng. A 552 (2012) 336–344.

    Article  Google Scholar 

  34. E. R. I. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi, Wear 268 (2010) 1111–1121.

    Article  Google Scholar 

  35. H. I. Kurt, M. Oduncuoglu, Mathematical Problems in Engineering 2015 (2015) 710526.

    Article  Google Scholar 

  36. H. I. Kurt, M. Oduncuoglu, Int. J. Polym. Sci. 2015 (2015) 315710.

    Article  Google Scholar 

  37. S. A. Hosseini, K. Ranjbar, R. Dehmolaei, A. R. Amirani, J. Alloys Comp. 622 (2015) 725–733.

    Article  Google Scholar 

  38. H. Kurt, M. Oduncuoglu, Metals 5 (2015) 371–382.

    Article  Google Scholar 

  39. H. Kurt, M. Oduncuoglu, M. Kurt, Metals 5 (2015) 836–849.

    Article  Google Scholar 

  40. D. J. Lloyd, Int. Mater. Rev. 39 (1994) 1–23.

    Article  Google Scholar 

  41. A. C. Lund, C. A. Schuh, Mechanical Properties: Strengthening Mechanisms in Metals A2-Wyder, Franco BassaniGerald L. LiedlPeter, Encyclopedia of Condensed Matter Physics, Elsevier, Oxford, 2005, pp. 306–311.

    Google Scholar 

  42. A. P. Semenov, J. Frict. Wear 28 (2007) 401–408.

    Article  Google Scholar 

  43. A. Siddharth Sharma, K. Biswas, B. Basu, Wear 319 (2014) 160–171.

    Article  Google Scholar 

  44. T. Mang, W. Dresel, Lubricants and Lubrication, 2nd ed., Wiley, Germany, 2007.

    Google Scholar 

  45. A. Shafiei-Zarghani, S. F. Kashani-Bozorg, A. Zarei-Hanzaki, Mater. Sci. Eng. A 500 (2009) 84–91.

    Article  Google Scholar 

  46. R. V. Barenji, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2015: 1464420715584950.

  47. C. Sharma, D. K. Dwivedi, P. Kumar, Mater. Des. 36 (2012) 379–390.

    Article  Google Scholar 

  48. A. V. Kolubaev, E. A. Kolubaev, O. V. Sizova, A.A. Zaikina, V. E. Rubtsov, S. Y. Tarasov, P. A. Vasiliev, J. Frict. Wear 36 (2015) 127–131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haul Ibrahim Kurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, H.I., Oduncuoglu, M. & Asmatulu, R. Wear Behavior of Aluminum Matrix Hybrid Composites Fabricated through Friction Stir Welding Process. J. Iron Steel Res. Int. 23, 1119–1126 (2016). https://doi.org/10.1016/S1006-706X(16)30165-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30165-0

Key words

Navigation