Skip to main content
Log in

Heat Transfer of TiO2/Water Nanofluid in a Coiled Agitated Vessel with Propeller

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

An attempt is made to investigate heat transfer enhancement using nanofluid in a coiled agitated vessel fitted with propeller agitator. The heat transfer coefficient in coiled agitated vessel for water and TiO2/water nanofluid of 3 different volume concentrations (0.10%, 0.20% and 0.30%) are estimated and compared. The heat transfer coefficient for nanofluid is found to be higher than that for water and also found to increase with increasing volume concentrations. The enhancement in the convective heat transfer using nanofluid is found to be a maximum of 17.59%. Empirical correlations are separately formed for water and TiO2/water nanofluid as well as found to fit the experimental data within ±5% for water and within ±10% for nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ao :

Outside surface area of helical coil

Cp :

Specific heat capacity of water at given temperature

Da :

Diameter of the agitator

Dc :

Average diameter of the helix tubing

do :

Outside diameter of the coiled tube

di :

Inside diameter of the coiled tube

hi :

Inside heat transfer coefficient

hi :

Outside heat transfer coefficient

k:

Thermal conductivity of fluid at given temperature

kc :

Thermal conductivity of coil material

l:

Length of the helical coil

M:

Mass flow rate of water

N:

Rotating speed of agitator

Nu:

Nusselt number

hodo / k:

For outside heat transfer coefficient

hidi /k:

For inside heat transfer coefficient

Pr:

Prandtl number (C p μ/k)

Q:

Average heat transfer rate

Re:

Reynolds number

ρNDa 2 / μ:

For agitator

ρνDi / μ:

For cooling coil tube

TB :

Average bath temperature of agitated liquid medium

Ti :

Inlet temperature of cooling water

Ti,w :

Inside wall temperature of cooling coil

T o :

Outside temperature of cooling water

ΔT ln :

Logarithmic mean temperature difference

U o :

Overall heat transfer coefficient

x w :

helical coil wall thickness

ρ:

Density at given temperature

μ:

Viscosity at given temperature

μ w :

Viscosity at wall temperature

φ:

Volume fraction of nanoparticles

bf:

Base fluid

nf:

Nanofluid

p:

Nano particle

cw:

Cooling water

w:

Water

References

  1. TRIVENI B., VISHWANADHAN B. and VENKATESHWAR S. Studies on heat transfer to Newtonian and non-Newtonian fluids in agitated vessels[J]. Heat Mass Transfer, 2008, 44(11): 1281–1288.

    Article  Google Scholar 

  2. PERARASU V. T., ARIVAZHAGAN M. and SIVASHANMUGAM P. Heat transfer studies in coiled agitated vessel with varying heat input[J]. International Journal of Food Engineering, 2011, 7(4): Article 3.

    Google Scholar 

  3. LIN J., LIN P. and CHEN H. Research on the transport and deposition of nanoparticles in a rotating curved pipe[J]. Physics of Fluids, 2009, 21(12): 1–11.

    Article  Google Scholar 

  4. YU M., LIN J. and CHAN T. A new moment method for solving the coagulation equation for particles in Brownian motion[J]. Aerosol Science and Technology, 2008, 42(9): 705–713.

    Article  Google Scholar 

  5. YU Ming-Zhou, LIN Jian-Zhong and CHAN Tat-Leung. Effect of precursor loading on non-spherical TiO2 nano-particle synthesis in a diffusion flame reactor[J]. Chemical Engineering Science, 2008: 63(9): 2317–2329.

    Article  Google Scholar 

  6. CHANDRASEKAR M., SURESH S. and CHANDRA BOSE A. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts[J]. Experimental Therm Fluid Science, 2010, 34(2): 122–130.

    Article  Google Scholar 

  7. AMROLLAHI A., RASHIDI A. M. and LOTFI R. et al. Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region[J]. International Communications in Heat Mass Transfer, 2010, 37(6): 717–723.

    Article  Google Scholar 

  8. XIE H., LI Y. and YU W. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows[J]. Physics Letters A, 2010, 374(25): 2566–2568.

    Article  Google Scholar 

  9. FOTUKIAN S. M., NASR ESFAHANY M. Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube[J]. International Journal of Heat Fluid Flow, 2010, 31: 606–612.

    Article  Google Scholar 

  10. FOTUKIAN S. M., NASR ESFAHANY M. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube[J]. International Communications in Heat Mass Transfer, 2010, 37(2): 214–219.

    Article  Google Scholar 

  11. SURESH S., CHANDRASEKAR M. and CHANDRA SEKHAR S. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube[J]. Expimental Thermal Fluid Science, 2010, 35(3): 542–549.

    Article  Google Scholar 

  12. BIANCO V., MANCA O. and NARDINI S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube[J]. Internatinal Journal of Thermal Sciences, 2011, 50(3): 341–349.

    Article  Google Scholar 

  13. HOJJAT M., ETEMAD S. Gh. and BAGHERI R. et al. Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube[J]. Internatinal Journal of Thermal Sciences, 2011, 50(4): 525–531.

    Article  Google Scholar 

  14. SURESH S., VENKITARAJ K. P. and SELVAKUMAR P. Comparative study on thermal performance of helical screw tape inserts in laminar flow using Al2O3/ water and CuO/water nanofluids[J]. Superlattices Microstructures, 2011, 49(6): 608–622.

    Article  Google Scholar 

  15. CHUN Byung-Hee, KANG Hyun Uk and KIM Sung Hyun. Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system[J]. Korean Journal of Chemical Engineering, 2008, 25(5): 966–971.

    Article  Google Scholar 

  16. DUANGTHONGSUK W., WONGWISES S. Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger[J]. International Journal of Heat Mass Transfer, 2009, 52(7–8): 2059–2067.

    Article  Google Scholar 

  17. DUANGTHONGSUK W., WONGWISES S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime[J]. International Journal of Heat Mass Transfer, 2010, 53(1–3): 334–344.

    Article  Google Scholar 

  18. FARAJOLLAHI B., ETEMAD S. Gh. and HOJJAT M. Heat transfer of nanofluids in a shell and tube heat exchanger[J]. International Journal of Heat Mass Transfer, 2010, 53(1–3): 12–17.

    Article  Google Scholar 

  19. JWO Ching-Song, JENG Lung-Yue and TENG Tun-Ping et al. Performance of overall heat transfer in multi-channel heat exchanger by alumina nanofluid[J]. Journal of Alloys Compounds, 2010, 504(Suppl.1): S385–S388.

    Article  Google Scholar 

  20. NGUYEN C. T., ROY G. and GAUTHIER C. et al. Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system[J]. Applied Thermal Engineering, 2007, 27(8-9): 1501–1506.

    Article  Google Scholar 

  21. GHERASIM I., ROY G. and NGUYEN C. T. et al. Experimental investigation of nanofluids in confined laminar radial flows[J]. International Journal of Thermal Sciences, 2009, 48(8): 1486–1493.

    Article  Google Scholar 

  22. JUNG Jung-Yeal, OH Hoo-Suk and KWAK Ho-Young. Forced convective heat transfer of nanofluids in microchannels[J]. International Journal of Heat Mass Transfer, 2009, 52(1–2): 466–472.

    Article  Google Scholar 

  23. MOHAMMED H. A., BHASKARAN G. N. and SHUAIB H. et al. Numerical study of heat transfer enhancement of counter nanofluids flow in rectangular microchannel heat exchanger[J]. Superlattices Micro-structures, 2011, 50(3): 215–233.

    Article  Google Scholar 

  24. HWANG Yunjun, LEE Jae-Keun and LEE Jong-Ku et al. Production and dispersion stability of nanoparticles in nanofluids[J]. Powder Technology, 2008, 186(2): 145–153.

    Article  Google Scholar 

  25. FEDELE L., COLLA L. and BOBBO S. et al. Experimental stability analysis of different water based nano-fluids[J]. Nanoscale Research Letters, 2011, 6: 300.

    Google Scholar 

  26. TORII S., YANG W. J. Heat transfer augmentation of aqueous suspensions of nanodiamonds in turbulent pipe flow[J]. Journal of Heat Transfer, 2009, 131(4): 043203.

    Google Scholar 

  27. WANG X. Q., MUJUMDAR A. S. Heat transfer characteristics of nanofluids: A review[J]. International Journal of Thermal Sciences, 2007, 46(1): 1–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arivazhagan.

Additional information

Biography: PERARASU V. T. (1981-), Male, Master Candidate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perarasu, V.T., Arivazhagan, M. & Sivashanmugam, P. Heat Transfer of TiO2/Water Nanofluid in a Coiled Agitated Vessel with Propeller. J Hydrodyn 24, 942–950 (2012). https://doi.org/10.1016/S1001-6058(11)60322-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(11)60322-3

Keywords

Navigation