Active-Site Properties Of The Blue Copper Proteins

https://doi.org/10.1016/S0898-8838(08)60044-6Get rights and content

Publisher Summary

Metals at the active sites of metalloproteins display special properties and are generally impressively efficient in their functional roles. The metal or metals are said to be poised for catalytic action or in an entatic state. This chapter discusses the main with the active site chemistry of blue copper proteins. A number of techniques have contributed to the present understanding of the active site chemistry of blue copper proteins. The blue copper proteins are involved in electron transport, and provide one of the best examples of active site design. Electron transfer reactions proceed by a transition state, in which the structures are intermediate between the reactant and product states. Perhaps foremost is that involving X-ray crystallography. A wide range of physical techniques, including kinetic/mechanistic studies, has also played a vital role. Further studies on some of the less extensively studied proteins in this class are now required for a fuller understanding of the variability and fine tuning of the blue copper active site.

References (107)

  • J.M. Guss et al.

    J. Mol. Biol.

    (1986)
  • T.P. J. Garrett et al.

    J. Biol. Chem.

    (1984)
  • W.B. Church et al.

    J. Biol. Chem.

    (1986)
  • C.A. Collyer et al.

    J. Mol. Biol.

    (1990)
  • E.T. Adman et al.

    J. Mol. Biol.

    (1978)
  • E.T. Adman et al.

    J. Biol. Chem.

    (1989)
  • W.J. Chazin et al.

    J. Mol. Biol.

    (1988)
  • A.G. Lappin

    Met. Ions Biol. Syst.

    (1981)
  • S. Katoh et al.

    Nature (London)

    (1961)
  • D.L. Willey et al.

    Cell (Cambridge, Mass.)

    (1984)
  • D. Beoku-Betts et al.

    Inorg. Chem.

    (1985)
  • O. Farver et al.

    Biochemistry

    (1982)
  • J. Tobari et al.

    Biochem. Biophys. Res. Commun.

    (1981)
  • R.C. Blake et al.

    J. Biol. Chem.

    (1987)
  • R.A. Scott et al.

    J. Am. Chem. Soc.

    (1982)
  • C.M. Groeneveld et al.

    Biochim. Biophys. Acta

    (1986)
  • J. McGinnis et al.

    Inorg. Chem.

    (1988)
  • M.P. Jackman et al.

    J. Am. Chem. Soc.

    (1987)
  • A.G. Lappin et al.

    J. Am. Chem. Soc.

    (1979)
  • A.F. Corin et al.

    Biochemistry

    (1983)
  • B.G. Karlsson et al.

    FEBS Lett.

    (1989)
  • A. Lommen et al.

    J. Biol. Chem.

    (1990)
  • B.R. M. Reinhammar

    Biochim. Biophys. Acta

    (1970)
  • C. Bergman et al.

    Biochem. Biophys. Res. Commun.

    (1977)
    S. Dahlin et al.

    Biochemistry

    (1989)
  • T. Stigbrand

    Biochim. Biophys. Acta

    (1971)
    C. Bergman, Ph.D. Thesis, Chalmers University of Technology, Göteborg...
  • D.F. Blair et al.

    J. Am. Chem. Soc.

    (1985)
  • J. McGinnis et al.

    Inorg. Chem.

    (1986)
  • J.A. Fee et al.

    J. Biol. Chem.

    (1984)
    H.-T. Tsang et al.

    Biochemistry

    (1989)
  • C.W. Carter et al.

    J. Biol. Chem.

    (1974)
    S.T. Freer et al.

    J. Biol. Chem.

    (1975)
  • A. Lommen et al.

    Eur. J. Biochem.

    (1988)
  • H.E. M. Christensen et al.

    Biochim. Biophys. Acta

    (1990)
    De D.G. Silva A. H., H.E. M. Christensen P. Kyritsis A.G. Sykes, to be...
  • D.G.A. H. De Silva et al.

    Biochim. Biophys. Acta

    (1988)
  • S. Dahlin et al.

    Biochem. J.

    (1984)
  • C.M. Groeneveld et al.

    J. Am. Chem. Soc.

    (1987)
  • R.M. Keller et al.

    FEBS Lett.

    (1976)
  • C.-T. Lin et al.

    J. Am. Chem. Soc.

    (1976)
  • H.B. Gray

    Chem. Soc. Rev.

    (1986)
  • B.L. Vallee et al.

    Proc. Natl. Acad. Sci. USA

    (1968)
  • P.M. Colman et al.

    Nature (London)

    (1978)
  • J.M. Guss et al.

    J. Mol. Biol.

    (1983)
  • G.E. Norris et al.

    J. Mol. Biol.

    (1983)

    J. Am. Chem. Soc.

    (1986)
    E.N. Baker

    J. Mol. Biol.

    (1988)
  • Results communicated at Royal Society of Chemistry (London), Annual Meeting, Belfast, April 1990; personal...
  • E.T. Adman et al.

    Isr. J. Chem.

    (1981)
  • J.M. Guss et al.

    Science

    (1988)
  • J.M. Moore et al.

    Science

    (1988)
    J.M. Moore et al.

    Biochemistry

    (1988)
  • Reviews
  • A.G. Sykes

    Chem. Soc. Rev.

    (1985)
  • E.T. Adman

    Top. Mol. Struct, Biol.

    (1985)
  • A.G. Sykes

    Struct. Bonding

    (1990)
  • A. Messerschmidt et al.

    J. Mol. Biol.

    (1989)
  • Cited by (297)

    • DFT modeling of structures and redox potentials of wild-type, Nickel-substituted and mutated (N47S/M121L, HPAz) Azurin

      2018, Inorganica Chimica Acta
      Citation Excerpt :

      This primary copper coordination sphere (with the only exception of the axial backbone carbonyl oxygen of Gly45) is a common feature of the redox active protein family of cupredoxins to which Az belongs. Despite this similarity, cupredoxins span a wide range of reduction potentials (E0), going from stellacyanin having the lowest potential of ca. 184 mV [5] to rusticyanin showing the higher potential of ca. 680 mV [6]. All E0 values are versus NHE (Normal Hydrogen Electrode).

    View all citing articles on Scopus
    View full text