Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2

https://doi.org/10.1016/0038-1098(72)90294-3Get rights and content

Using a triple Raman spectrometer, we have observed the rigid-layer E2g2 mode in hexagonal MoS2. The interlayer forces are shown to be about 100 times weaker than the intralayer forces, and a van der Waals model of the interlayer bonding is proposed.

Mit Hilfe eines dreifachen Raman Spektrometers haben wir die E2g2 Starrschichtvibration in hexaedrischen MoS2 beobachtet. Die Kräfte zwischen den Schichten erweisen sich als ungefähr hundert Mal schwächer als die Kräfte innerhalb der Schichten, und ein van der Waals Modell der Bindung zwischen den Schichten wird vorgeschlagen.

Reference (10)

  • ConnellG.A.N. et al.

    J. Phys. Chem. Solids

    (1969)
  • VerbleJ.L. et al.

    Phys. Rev. Lett.

    (1970)
  • WietingT.J. et al.

    Phys. Rev.

    (1971)
  • WietingT.J. et al.

    Phys. Rev.

    (1972)
There are more references available in the full text version of this article.

Cited by (138)

  • Recent advances of atomically thin 2D heterostructures in sensing applications

    2021, Nano Today
    Citation Excerpt :

    Moreover, a reliable growth mechanism based on the classical nucleation kinetic model was developed by Hoseok Heo and co-workers to investigate the critical conditions that determined the growth regime (stacking or stitching) of the second TMDCs layer [81]. As the schematic is shown in Fig. 3a, the vapor reactants to form the second TMDCs layer were bonded on the facet edges of the first layer selectively, which were identified as the preferential nucleation sites [87,88]. Furthermore, the growth direction on the first TMDCs layer thermodynamically depended on the critical free energy barrier for nucleation, in which the growth regime of the second TMDCs layer preferentially occurs in the direction that maximized the associated nucleation rate (Fig. 3b) [81].

  • MoS<inf>2</inf>/Co<inf>9</inf>S<inf>8</inf>/MoC heterostructure connected by carbon nanotubes as electrocatalyst for efficient hydrogen evolution reaction

    2021, Journal of Materials Science and Technology
    Citation Excerpt :

    The Raman spectrum of MCM@CNT-N (Fig. S3†) shows two strong peaks at 1359 (D band) and 1586 (G band) cm−1, which represent the disordered carbon and graphite carbon, respectively [29]. The Raman peaks at 383.4 and 410.0 cm −1 agree with E12g (vibration of the Mo-S bond in the layer) and A1g (vibration of the S atom between the layers) vibration modes [30]. The XPS survey spectra (Fig. 2(a)) show the presence of Mo, Co, C, S, and N species in MCM@CNT-N.

View all citing articles on Scopus
View full text