Skip to main content
Log in

Development of a two-dimensional LC–MS/MS system for the determination of proline and 4-hydroxyproline enantiomers in biological and food samples

  • Special Issue: Original Paper
  • Novel Analytical Technologies Contributing to Clinical and Pharmaceutical Research Fields
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A two-dimensional LC–MS/MS system has been developed for the enantioselective determination of proline (Pro), cis-4-hydroxyproline (cis-4-Hyp) and trans-4-hydroxyproline (trans-4-Hyp) in a variety of biological samples. The amino acids were pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), and the NBD-derivatives were separated by a reversed-phase column (Singularity RP18) as their d plus l mixtures in the first dimension. The collected target fractions were then introduced into the second dimension where the enantiomers were separated by a Pirkle-type enantioselective column (Singularity CSP-001S) and determined by a tandem mass spectrometer (Triple Quad™ 5500). The method was validated by the standard amino acids and also by human plasma, and sufficient results were obtained for the calibration, precision and accuracy. The method was applied to human plasma and urine, bivalve tissues and fermented food/beverages. d-Pro was widely found in the human physiological fluids, bivalves and several fermented products. Although trans-4-d-Hyp was not found in all the tested samples, cis-4-d-Hyp was present in human urine and tissues of the ark shell, and further studies focusing on the origin and physiological significance of these d-enantiomers are expected.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are available within this published article.

References

  1. J.J. Corrigan, Science (1969). https://doi.org/10.1126/science.164.3876.142

    Article  PubMed  Google Scholar 

  2. C. Ishii, A. Furusho, C.-L. Hsieh, K. Hamase, Chromatography (2020). https://doi.org/10.15583/jpchrom.2020.004

    Article  Google Scholar 

  3. C. Ishii, K. Hamase, J. Pharm. Biomed. Anal. (2023). https://doi.org/10.1016/j.jpba.2023.115627

    Article  PubMed  Google Scholar 

  4. S. Karakawa, M. Harada, R. Nishimoto, Chromatography (2023). https://doi.org/10.15583/jpchrom.2023.001

    Article  Google Scholar 

  5. T. Nishikawa, J. Chromatogr. B (2011). https://doi.org/10.1016/j.jchromb.2011.08.030

    Article  Google Scholar 

  6. M. Katane, H. Homma, J. Chromatogr. B (2011). https://doi.org/10.1016/j.jchromb.2011.03.062

    Article  Google Scholar 

  7. A. Furusho, K.A. Ikejiri, C. Ishii, T. Akita, M. Mita, M. Nagano, T. Ide, K. Hamase, Chromatography (2022). https://doi.org/10.15583/jpchrom.2021.020

    Article  Google Scholar 

  8. C. Ishii, T. Akita, M. Mita, R. Konno, K. Hamase, Chromatography (2023). https://doi.org/10.15583/jpchrom.2023.002

    Article  Google Scholar 

  9. S.H. Snyder, P.M. Kim, Neurochem. Res. (2000). https://doi.org/10.1023/a:1007586314648

    Article  PubMed  Google Scholar 

  10. A. Hashimoto, T. Nishikawa, T. Hayashi, N. Fujii, K. Harada, T. Oka, K. Takahashi, FEBS Lett. (1992). https://doi.org/10.1016/0014-5793(92)80397-y

    Article  PubMed  Google Scholar 

  11. C. Henneberger, T. Papouin, S.H.R. Oliet, D.A. Rusakov, Nature (2010). https://doi.org/10.1038/nature08673

    Article  PubMed  PubMed Central  Google Scholar 

  12. D.S. Dunlop, A. Neidle, D. McHale, D.M. Dunlop, A. Lajtha, Biochem. Biophys. Res. Commun. (1986). https://doi.org/10.1016/s0006-291x(86)80329-1

    Article  PubMed  Google Scholar 

  13. Y. Takigawa, H. Homma, J.-A. Lee, T. Fukushima, T. Santa, T. Iwatsubo, K. Imai, Biochem. Biophys. Res. Commun. (1998). https://doi.org/10.1006/bbrc.1998.8971

    Article  PubMed  Google Scholar 

  14. Y. Nagata, H. Homma, J.-A. Lee, K. Imai, FEBS Lett. (1999). https://doi.org/10.1016/s0014-5793(99)00045-9

    Article  PubMed  Google Scholar 

  15. A. D’Aniello, M.M. Di Fiore, G.H. Fisher, A. Milone, A. Seleni, S. D’Aniello, A.F. Perna, D. Ingrosso, FASEB J. (2000). https://doi.org/10.1096/fasebj.14.5.699

    Article  PubMed  Google Scholar 

  16. R. Koga, H. Yoshida, H. Nohta, K. Hamase, Chromatography (2019). https://doi.org/10.15583/jpchrom.2019.002

    Article  Google Scholar 

  17. R. Koga, Y. Miyoshi, Y. Sato, M. Mita, R. Konno, W. Lindner, K. Hamase, J. Chromatogr. A (2016). https://doi.org/10.1016/j.chroma.2016.07.053

    Article  PubMed  Google Scholar 

  18. R. Koga, Y. Miyoshi, E. Negishi, T. Kaneko, M. Mita, W. Lindner, K. Hamase, J. Chromatogr. A (2012). https://doi.org/10.1016/j.chroma.2012.08.075

    Article  PubMed  Google Scholar 

  19. R. Fleischmajer, L. Fishman, Nature (1965). https://doi.org/10.1038/205264a0

    Article  PubMed  Google Scholar 

  20. T. Pihlajaniemi, R. Myllylä, K.I. Kivirikko, J. Hepatol. (1991). https://doi.org/10.1016/0168-8278(91)90002-s

    Article  PubMed  Google Scholar 

  21. H.E. Jasin, C.W. Fink, W. Wise, M. Ziff, J. Clin. Invest. (1962). https://doi.org/10.1172/JCI104650

    Article  PubMed  PubMed Central  Google Scholar 

  22. S. Adugani, G. Bannimath, P. Sastry, Biomed. Biotechnol. Res. J. (2021). https://doi.org/10.4103/bbrj.bbrj_91_21

    Article  Google Scholar 

  23. M.A. Karsdal, S.J. Daniels, S.H. Nielsen, C. Bager, D.G.K. Rasmussen, R. Loomba, R. Surabattula, I.F. Villesen, Y. Luo, D. Shevell, N.S. Gudmann, M.J. Nielsen, J. George, R. Christian, D.J. Leeming, D. Schuppan, Liver Int. (2020). https://doi.org/10.1111/liv.14390

    Article  PubMed  Google Scholar 

  24. M. Miyanaga, T. Uchiyama, A. Motoyama, N. Ochiai, O. Ueda, M. Ogo, Skin Pharmacol. Physiol. (2021). https://doi.org/10.1159/000513988

    Article  PubMed  Google Scholar 

  25. Y. Shigemura, K. Iwai, F. Morimatsu, T. Iwamoto, T. Mori, C. Oda, T. Taira, E.Y. Park, Y. Nakamura, K. Sato, J. Agric. Food Chem. (2009). https://doi.org/10.1021/jf802785h

    Article  PubMed  Google Scholar 

  26. B. Fransson, U. Ragnarsson, Amino Acids (1999). https://doi.org/10.1007/BF01366928

    Article  PubMed  Google Scholar 

  27. Y. Huang, W. Zhang, Q. Shi, T. Toyo’oka, J.Z. Min, Food Anal. Methods (2018). https://doi.org/10.1007/s12161-018-1288-9

    Article  Google Scholar 

  28. T. Langrock, N. García-Villar, R. Hoffmann, J. Chromatogr. B (2007). https://doi.org/10.1016/j.jchromb.2006.10.015

    Article  Google Scholar 

  29. J. Kohama, K. Saito, H. Sakamoto, Y. Iwasaki, R. Ito, M. Horie, H. Nakazawa, Bunseki Kagaku (2007). https://doi.org/10.2116/bunsekikagaku.56.1019

    Article  Google Scholar 

  30. S. Bernardo-Bermejo, S. Adámez-Rodríguez, E. Sánchez-López, M. Castro-Puyana, M.L. Marina, Microchem. J. (2023). https://doi.org/10.1016/j.microc.2022.108279

    Article  Google Scholar 

  31. Y. Tojo, K. Hamase, M. Nakata, A. Morikawa, M. Mita, Y. Ashida, W. Lindner, K. Zaitsu, J. Chromatogr. B (2008). https://doi.org/10.1016/j.jchromb.2008.06.025

    Article  Google Scholar 

  32. E. Okuma, K. Watanabe, H. Abe, Fish. Sci. (1998). https://doi.org/10.2331/fishsci.64.606

    Article  Google Scholar 

  33. Y. Nagata, R. Masui, T. Akino, Experientia (1992). https://doi.org/10.1007/BF01919147

    Article  PubMed  Google Scholar 

  34. C. Ishii, T. Akita, M. Mita, T. Ide, K. Hamase, J. Chromatogr. A (2018). https://doi.org/10.1016/j.chroma.2018.07.076

    Article  PubMed  Google Scholar 

  35. A. Hesaka, S. Sakai, K. Hamase, T. Ikeda, R. Matsui, M. Mita, M. Horio, Y. Isaka, T. Kimura, Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-41608-0

    Article  PubMed  PubMed Central  Google Scholar 

  36. K. Okada, Y. Gogami, Y. Takeshita, T. Oikawa, Trace Nutr. Res. 29, 62–66 (2012)

    Google Scholar 

  37. Y. Miyoshi, M. Nagano, S. Ishigo, Y. Ito, K. Hashiguchi, N. Hishida, M. Mita, W. Lindner, K. Hamase, J. Chromatogr. B (2014). https://doi.org/10.1016/j.jchromb.2014.01.034

    Article  Google Scholar 

  38. C. Ishii, T. Akita, M. Nagano, M. Mita, K. Hamase, Chromatography (2019). https://doi.org/10.15583/jpchrom.2019.011

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by JSPS KAKENHI Grant Numbers JP22H02752, JP22K06547 and JP23K14335. The authors appreciate KAGAMI, Inc. (Ibaraki, Osaka, Japan) for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hamase.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, C., Tojo, Y., Iwasaki, K. et al. Development of a two-dimensional LC–MS/MS system for the determination of proline and 4-hydroxyproline enantiomers in biological and food samples. ANAL. SCI. 40, 881–889 (2024). https://doi.org/10.1007/s44211-024-00530-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-024-00530-w

Keywords

Navigation