Skip to main content
Log in

Digital PCR using a simple PDMS microfluidic chip and standard laboratory equipment

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Digital PCR (dPCR) enables sensitive and precise quantification of template nucleic acid without calibration. However, dPCR is not yet in widespread use, probably due to the need for expensive specialized instruments. In this paper, we describe a dPCR system using a simple microfluidic chip and common laboratory tools. The microfluidic chip consists of two parts: a PDMS part with 24,840 × 0.25 nL microwells and a PDMS-coated flat glass plate. Human RNase P gene was adopted as the model template. Commercial products of human genomic DNA and real-time PCR reagents were mixed to make a PCR mixture. The PCR mixture was confined to the microwells by the PDMS degas-driven liquid control technique. The thermal cycling was performed on a common well-type thermal cycler with a minor modification. During the thermal cycling, evaporation of the PCR mixture was prevented with a handmade water holder. In the fluorescence image, bright (positive) microwells and dim (negative) ones were clearly discriminated. The number of the positive microwells was counted using software, and was used for estimation of the template concentration in the sample based on the theory of the Poisson distribution. The estimated concentrations well agreed with the input template concentrations in the range from 1.32 copies/µL to 13 200 copies/µL. The techniques presented in this paper will pave the way for facile dPCR in a broad range of laboratories without the need for expensive instruments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Basu, SLAS Technol. (2017). https://doi.org/10.1177/2472630317705680

    Article  PubMed  Google Scholar 

  2. P.L. Quan, M. Sauzade, E. Brouzes, Sensors (2018). https://doi.org/10.3390/s18041271

    Article  PubMed  PubMed Central  Google Scholar 

  3. C.M. Hindson, J.R. Chevillet, H.A. Briggs, E.N. Gallichotte, I.K. Ruf, B.J. Hindson, R.L. Vessella, M. Tewari, Nat. Methods (2013). https://doi.org/10.1038/nmeth.2633

    Article  PubMed  PubMed Central  Google Scholar 

  4. B.J. Hindson, K.D. Ness, D.A. Masquelier, P. Belgrader, N.J. Heredia, A.J. Makarewicz, I.J. Bright, M.Y. Lucero, A.L. Hiddessen, T.C. Legler, T.K. Kitano, M.R. Hodel, J.F. Petersen, P.W. Wyatt, E.R. Steenblock, P.H. Shah, L.J. Bousse, C.B. Troup, J.C. Mellen, D.K. Wittmann, N.G. Erndt, T.H. Cauley, R.T. Koehler, A.P. So, S. Dube, K.A. Rose, L. Montesclaros, S.L. Wang, D.P. Stumbo, S.P. Hodges, S. Romine, F.P. Milanovich, H.E. White, J.F. Regan, G.A. Karlin-Neumann, C.M. Hindson, S. Saxonov, B.W. Colston, Anal. Chem. (2011). https://doi.org/10.1021/ac202028g

    Article  PubMed  PubMed Central  Google Scholar 

  5. A.S. Whale, J.F. Huggett, S. Cowen, V. Speirs, J. Shaw, S. Ellison, C.A. Foy, D.J. Scott, Nucleic Acids Res. (2012). https://doi.org/10.1093/nar/gks203

    Article  PubMed  PubMed Central  Google Scholar 

  6. E.A. Ottesen, J.W. Hong, S.R. Quake, J.R. Leadbetter, Science (2006). https://doi.org/10.1126/science.1131370

    Article  PubMed  Google Scholar 

  7. F. Shen, W.B. Du, J.E. Kreutz, A. Fok, R.F. Ismagilov, Lab Chip (2010). https://doi.org/10.1039/c004521g

    Article  PubMed  PubMed Central  Google Scholar 

  8. N.R. Beer, B.J. Hindson, E.K. Wheeler, S.B. Hall, K.A. Rose, I.M. Kennedy, B.W. Colston, Anal. Chem. (2007). https://doi.org/10.1021/ac701809w

    Article  PubMed  Google Scholar 

  9. D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. Ben Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, V. Taly, Lab Chip (2011) https://doi.org/10.1039/c1lc20128j

  10. K.A. Heyries, C. Tropini, M. VanInsberghe, C. Doolin, O.I. Petriv, A. Singhal, K. Leung, C.B. Hughesman, C.L. Hansen, Nat. Methods (2011). https://doi.org/10.1038/nmeth.1640

    Article  PubMed  Google Scholar 

  11. Y.F. Men, Y.S. Fu, Z.T. Chen, P.A. Sims, W.J. Greenleaf, Y.Y. Huang, Anal. Chem. (2012). https://doi.org/10.1021/ac300761n

    Article  PubMed  Google Scholar 

  12. A.M. Thompson, A. Gansen, A.L. Paguirigan, J.E. Kreutz, J.P. Radich, D.T. Chiu, Anal. Chem. (2014). https://doi.org/10.1021/ac5035924

    Article  PubMed  PubMed Central  Google Scholar 

  13. Q.Y. Zhu, L. Qiu, B.W. Yu, Y.N. Xu, Y.B. Gao, T.T. Pan, Q.C. Tian, Q. Song, W. Jin, Q.H. Jin, Y. Mu, Lab Chip (2014). https://doi.org/10.1039/c3lc51327k

    Article  PubMed  PubMed Central  Google Scholar 

  14. Q.C. Tian, Q. Song, Y.N. Xu, Q.Y. Zhu, B.W. Yu, W. Jin, Q.H. Jin, Y. Mu, Anal. Methods (2015). https://doi.org/10.1039/c4ay02604g

    Article  Google Scholar 

  15. Y.Z. Wang, K.M. Southard, Y. Zeng, Analyst (2016). https://doi.org/10.1039/c6an00164e

    Article  PubMed  PubMed Central  Google Scholar 

  16. Y.Y. Fu, H.B. Zhou, C.P. Jia, F.X. Jing, Q.H. Jin, J.L. Zhao, G. Li, Sens. Actuators B (2017). https://doi.org/10.1016/j.snb.2017.01.161

    Article  Google Scholar 

  17. Q.Y. Zhu, Y.N. Xu, L. Qiu, C.C. Ma, B.W. Yu, Q. Song, W. Jin, Q.H. Jin, J.Y. Liu, Y. Mu, Lab Chip (2017). https://doi.org/10.1039/c7lc00267j

    Article  PubMed  PubMed Central  Google Scholar 

  18. C.D. Ahrberg, J.M. Lee, B.G. Chung, Biochip J. (2019). https://doi.org/10.1007/s13206-019-3302-8

    Article  Google Scholar 

  19. X. Zhou, G.C. Ravichandran, P. Zhang, Y. Yang, Y. Zeng, Lab Chip (2019). https://doi.org/10.1039/c9lc00932a

    Article  PubMed  PubMed Central  Google Scholar 

  20. X. Cui, L. Wu, Y. Wu, J.H. Zhang, Q. Zhao, F.X. Jing, L. Yi, G. Li, Anal. Chim. Acta (2020). https://doi.org/10.1016/j.aca.2020.02.010

    Article  PubMed  Google Scholar 

  21. H.Q. Si, G.W. Xu, F.X. Jing, P. Sun, D. Zhao, D.P. Wu, Sens. Actuators B. (2020). https://doi.org/10.1016/j.snb.2020.128197

    Article  Google Scholar 

  22. G.W. Xu, H.Q. Si, F.X. Jing, P. Sun, D. Zhao, D.P. Wu, Micromachines (2020). https://doi.org/10.3390/mi11121025

    Article  PubMed  PubMed Central  Google Scholar 

  23. G.W. Xu, H.Q. Si, F.X. Jing, P. Sun, D.P. Wu, Biosens (2021). https://doi.org/10.3390/bios11050158

    Article  Google Scholar 

  24. J.M. Hu, L.B. Chen, P.F. Zhang, K.W. Hsieh, H. Li, S. Yang, T.H. Wang, Lab Chip (2021). https://doi.org/10.1039/d1lc00636c

    Article  PubMed  PubMed Central  Google Scholar 

  25. T.B. Xie, P. Wang, L. Wu, B.Y. Sun, Q. Zhao, G. Li, Lab Chip (2021). https://doi.org/10.1039/d1lc00448d

    Article  PubMed  Google Scholar 

  26. C.Y. Sung, C.C. Huang, Y.S. Chen, K.F. Hsu, G.B. Lee, Lab Chip (2021). https://doi.org/10.1039/d1lc00663k

    Article  PubMed  Google Scholar 

  27. T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, I. Pinnau, J. Polym. Sci. Part B: Polym. Phys. (2000). https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3%3c415::AID-POLB8%3e3.0.CO;2-Z

    Article  Google Scholar 

  28. K. Hosokawa, K. Sato, N. Ichikawa, M. Maeda, Lab Chip (2004). https://doi.org/10.1039/B403930K

    Article  PubMed  Google Scholar 

  29. T. Ito, A. Inoue, K. Sato, K. Hosokawa, M. Maeda, Anal. Chem. (2005). https://doi.org/10.1021/ac050122f

    Article  PubMed  Google Scholar 

  30. K. Hosokawa, M. Omata, K. Sato, M. Maeda, Lab Chip (2006). https://doi.org/10.1039/B513424B

    Article  PubMed  Google Scholar 

  31. K. Hosokawa, M. Omata, M. Maeda, Anal. Chem. (2007). https://doi.org/10.1021/ac070659o

    Article  PubMed  Google Scholar 

  32. L.F. Xu, H. Lee, D. Jetta, K.W. Oh, Lab Chip (2015). https://doi.org/10.1039/c5lc00716j

    Article  PubMed  PubMed Central  Google Scholar 

  33. K. Hosokawa, Anal. Sci. (2021). https://doi.org/10.2116/analsci.20SCR04

    Article  PubMed  Google Scholar 

  34. J.N. Lee, C. Park, G.M. Whitesides, Anal. Chem. (2003). https://doi.org/10.1021/ac0346712

    Article  PubMed  Google Scholar 

  35. M. Baer, T.W. Nilsen, C. Costigan, S. Altman, Nucleic Acids Res. (1990). https://doi.org/10.1093/nar/18.1.97

    Article  PubMed  PubMed Central  Google Scholar 

  36. G.L. Long, J.D. Winefordner, Anal. Chem. (1983). https://doi.org/10.1021/ac00258a001

    Article  Google Scholar 

  37. S.K. Wee, S.P. Sivalingam, E.P.H. Yap, Genes (2020). https://doi.org/10.3390/genes11060664

    Article  PubMed  PubMed Central  Google Scholar 

  38. G. Choi, T.J. Moehling, R.J. Meagher, Expert Rev. Mol. Diagn. (2023). https://doi.org/10.1080/14737159.2023.2169071

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 18K04917.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Hosokawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosokawa, K., Ohmori, H. Digital PCR using a simple PDMS microfluidic chip and standard laboratory equipment. ANAL. SCI. 39, 2067–2074 (2023). https://doi.org/10.1007/s44211-023-00425-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00425-2

Keywords

Navigation