Skip to main content
Log in

Separation performance of the calix[8]arene functionalized with polyethylene glycol units for capillary gas chromatography

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this paper, an amphiphilic calix[8]arene with polyethylene glycol unit branches (C8A-PEG) was synthesized and applied for capillary gas chromatography (GC). The C8A-PEG was coated on the inner wall of a capillary column by a static method with the column efficiency of 3165 plates/m and polar nature. As demonstrated, the C8A-PEG column has excellent physicochemical properties and separation performance since it has π-electron-rich 3D cavity which combines with polar PEG units. Compared with two columns corresponding to the construction units C8A and PEG, the C8A-PEG column shows distinctly advantageous performance for the mixture of 22 components with diverse types. Impressively, it shows satisfactory resolution for positional isomers and cis-/trans- isomers, especially the challenging isomers of toluidine and dimethylaniline. The outstanding distinguishing capability of the C8A-PEG stationary phase is mainly attributed to the abundant molecular recognition interactions, including van der Waals, dipole–dipole, H-bonding and ππ stacking interactions. This work has proved that the new GC stationary phases constructed by different units can complement each other's advantages, improve their physicochemical properties and separation performance, and have broad application prospects in chromatographic analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data can be available from the corresponding author upon reasonable request.

References

  1. Y. Mogi, Y. Kebukawa, K. Kobayashi, Anal. Sci. (2022). https://doi.org/10.2116/analsci.21P188

    Article  PubMed  Google Scholar 

  2. K. Shigeta, H. Tao, K. Nakagawa, T. Kondo, T. Nakazato, Anal. Sci. (2018). https://doi.org/10.2116/analsci.34.227

    Article  PubMed  Google Scholar 

  3. Z. Zhou, Y. Wang, F. Peng, F. Meng, J. Zha, L. Ma, Y. Du, N. Peng, L. Ma, Q. Zhang, L. Gu, W. Yin, Z. Gu, C. Tan, Angew. Chem. Int. Ed. (2022). https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/anie.202115939

  4. H. Iwai, M. Yamamoto, M. Matsuo, D. Liu, M. Fukushima, Anal. Sci. (2021). https://doi.org/10.2116/analsci.20P304

    Article  PubMed  Google Scholar 

  5. T. Sun, Q.C. Huang, R.N. Chen, W. Zhang, Q. Li, A.P. Wu, G.X. Wang, S.Q. Hu, Z.Q. Cai, New J. Chem. (2021). https://doi.org/10.1039/D1NJ03893A

    Article  Google Scholar 

  6. X. Han, X.X. He, H.A. Wang, B. Wang, B. Wu, J. Chromatogr. A (2016). https://doi.org/10.1016/j.chroma.2016.04.073

    Article  PubMed  Google Scholar 

  7. T. Sun, X.M. Shuai, K.X. Ren, X.X. Jiang, Y.J. Chen, X.Y. Zhao, Q.Q. Song, S.Q. Hu, Z.Q. Cai, Molecules (2019). https://doi.org/10.3390/molecules24173158

    Article  PubMed  PubMed Central  Google Scholar 

  8. C. Shende, A. Kabir, E. Townsend, A. Malik, Anal. Chem. (2003). https://doi.org/10.1021/ac0207224

    Article  PubMed  Google Scholar 

  9. C.F. Poole, Q.L. Li, W. Kiriden, W.W. Koziol, J. Chromatogr. A (2000). https://doi.org/10.1016/S0021-9673(00)00829-3

    Article  PubMed  Google Scholar 

  10. T. Sun, Q.C. Huang, W. Zhang, R.N. Chen, W. Li, H.P. Chen, S.Q. Hu, Z.Q. Cai, J. Chromatogr. A (2022). https://doi.org/10.1016/j.chroma.2022.463008

    Article  PubMed  Google Scholar 

  11. X.M. Shuai, Z.Q. Cai, Y.J. Chen, X.Y. Zhao, Q.Q. Song, K.X. Ren, X.X. Jiang, T. Sun, S.Q. Hu, Microchem. J. (2020). https://doi.org/10.1016/j.microc.2020.105124

    Article  Google Scholar 

  12. X.M. Shuai, Z.Q. Cai, X.Y. Zhao, Y.J. Chen, Q. Zhang, Z.W. Ma, J.J. Hu, T. Sun, S.Q. Hu, Chromatographia (2021). https://doi.org/10.1007/s10337-021-04018-x

    Article  Google Scholar 

  13. H. Nan, J.L. Anderson, TrAC, Trends Anal. Chem. (2018). https://doi.org/10.1016/j.trac.2018.03.020

    Article  Google Scholar 

  14. F.R. Mansour, L. Zhou, N.D. Danielson, Chromatographia (2015). https://doi.org/10.1007/s10337-015-2983-y

    Article  Google Scholar 

  15. Y.R. He, M.L. Qi, J. Chromatogr. A (2020). https://doi.org/10.1016/j.chroma.2020.460928

    Article  PubMed  Google Scholar 

  16. J. Glastrup, Polym. Degrad. Stab. (2003). https://doi.org/10.1016/S0141-3910(03)00097-1

    Article  Google Scholar 

  17. S. Eceolaza, M. Iriarte, C. Uriarte, J. del Rio, A. Etxeberria, Eur. Polym. J. (2012). https://doi.org/10.1016/j.eurpolymj.2012.04.018

    Article  Google Scholar 

  18. K. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, Y. Kobayashi, Radiat. Phys. Chem. (2000). https://doi.org/10.1016/S0969-806X(00)00211-5

    Article  Google Scholar 

  19. A.W. Thornton, K.M. Nairn, A.J. Hill, J.M. Hill, J. Membr. Sci. (2009). https://doi.org/10.1016/j.memsci.2009.03.053

    Article  Google Scholar 

  20. T. Sun, X.M. Shuai, Y.J. Chen, X.Y. Zhao, Q.Q. Song, K.X. Ren, X.X. Jiang, S.Q. Hu, Z.Q. Cai, RSC Adv. (2019). https://doi.org/10.1039/C9RA07798G

    Article  PubMed  PubMed Central  Google Scholar 

  21. J. Zhang, G. Podoprygorina, V. Brusko, V. Bohmer, A. Janshoff, Chem. Mater. (2005). https://doi.org/10.1021/cm047980x

    Article  Google Scholar 

  22. T. Sun, L.R. Qi, W.W. Li, Y. Li, X.M. Shuai, Z.Q. Cai, H.O. Chen, X.G. Qiao, L.F. Ma, J. Chromatogr. A (2019). https://doi.org/10.1016/j.chroma.2019.04.068

    Article  PubMed  Google Scholar 

  23. Y. Xue, Y. Guan, A.N. Zheng, H.N. Xiao, Colloids Surf. B (2013). https://doi.org/10.1016/j.colsurfb.2012.06.022

    Article  Google Scholar 

  24. N.Q. Li, B. Zhou, H.X. Luo, W.J. He, Z.J. Shi, Z.N. Gu, X.H. Zhou, J. Solid State Electrochem. (1998). https://doi.org/10.1007/s100080050096

    Article  Google Scholar 

  25. D. Budurova, D. Momekova, G. Momekov, P. Shestakova, H. Penchev, S. Rangelov (2021). https://doi.org/10.3390/pharmaceutics13122025

    Article  Google Scholar 

  26. C. Meenakshi, P. Sangeetha, V. Ramakrishnan, J. Lumin. (2013). https://doi.org/10.1016/j.jlumin.2012.12.055

    Article  Google Scholar 

  27. L.S. Li, M. Liu, S.L. Da, Y.Q. Feng, Talanta (2004). https://doi.org/10.1016/j.talanta.2003.09.015

    Article  PubMed  Google Scholar 

  28. M. Liu, L.S. Li, S.L. Da, Y.Q. Feng, Talanta (2005). https://doi.org/10.1016/j.talanta.2004.09.022

    Article  PubMed  PubMed Central  Google Scholar 

  29. A. Mangia, A. Pochini, Ŕ Ungaro, G.D. Andreetti, Anal. Lett. (2006). https://doi.org/10.1080/00032718308067960

    Article  Google Scholar 

  30. X.H. Lai, L. Lin, C.Y. Wu, Chromatographia (1999). https://doi.org/10.1007/BF02493674

    Article  Google Scholar 

  31. R.N. Chen, Z.Q. Cai, W. Li, Q.C. Huang, D. Nardiello, M. Quinto, X.M. Liu, S.Q. Hu, T. Sun, Chem. Biodiversity (2022). https://doi.org/10.1002/cbdv.202200829

    Article  Google Scholar 

  32. G. Delahousse, V.P. Agasse, J.C. Debray, M. Vaccaro, G. Cravotto, I. Jabin, P. Cardinael, J. Chromatogr. A (2013). https://doi.org/10.1016/j.chroma.2013.10.007

    Article  PubMed  Google Scholar 

  33. Q.C. Huang, Z.Q. Cai, W. Li, R.N. Chen, W. Zhang, K.Y. Jin, Y. Zhao, Y.W. Li, Tao Sun. Anal. Lett. (2022). https://doi.org/10.1080/00032719.2022.2143794

    Article  Google Scholar 

  34. J. Bouche, M. Verzele, J. Chromatogr. Sci. (1968). https://doi.org/10.1093/chromsci/6.10.501

    Article  Google Scholar 

  35. I.G. Zenkevich, A.A. Makarov, J. Anal. Chem. (2005). https://doi.org/10.1007/s10809-005-0193-8

    Article  Google Scholar 

  36. W.O. McReynolds, J. Chromatogr. Sci. (1970). https://doi.org/10.1093/chromsci/8.12.685

    Article  Google Scholar 

  37. J.M.P. Wasylka, C. Morrison, M. Biziuk, J. Namiesnik, Chem. Rev. (2015). https://doi.org/10.1021/cr4006999

    Article  Google Scholar 

  38. M.M. Chen, G.H. Zhu, J.X. Xu, H.R. Zhang, J.S. Liu, K.Z. Jiang, Rapid Commun. Mass Spectrom. (2017). https://doi.org/10.1002/rcm.8043

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 21705072), Natural Science Foundation of Liaoning Province (20180550016), the Training Project for Youth Backbone Teachers in Colleges and Universities of Luoyang normal university, and the Colleges and Universities in Henan Province Key Science and Research Project (No. 23A150008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Cai, Tao Sun or Wentao Liu.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 395 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Cai, Z., Chen, R. et al. Separation performance of the calix[8]arene functionalized with polyethylene glycol units for capillary gas chromatography. ANAL. SCI. 39, 989–998 (2023). https://doi.org/10.1007/s44211-023-00307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00307-7

Keywords

Navigation