Skip to main content
Log in

A colorimetric and fluorometric dual-mode carbon dots probe derived from phenanthroline precursor for the selective detection of Fe2+ and Fe3+

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Iron's metabolism is heavily involved in the regulation of redox balance for cell functions, however, the simultaneous monitoring of Fe2+/3+ concentration is still a great challenge due to their transitional nature in biological systems. A novel type of carbon dots (CDs) was synthesized by solvothermal treatment with 5-amino-1,10-phenanthroline (Aphen) and salicylic acid as precursors, and the resulting targeted CDs (T-CDs) were used to simultaneously detect Fe2+ and Fe3+. Comprehensive experimental characterizations revealed that the strong binding affinity of Aphen moiety to Fe2+ leads to the formation of rigid T-CDs aggregates, which causes a substantial enhancement of fluorescence intensity, whereas Fe3+ could cause the fluorescence quenching of T-CDs due to the oxidation‐reduction induced electron transfer. These different fluorescence responses allow T-CDs to sensitively differentiate Fe2+ from Fe3+, and give the limit of detection (LOD) of 1.78 and 2.78 μM for Fe2+ and Fe3+, respectively. Furthermore, the Aphen dominated structure endows the T-CDs with a colorimetric response to Fe2+ with a LOD of 0.13 μM, which is very different from Fe3+. Thus, the dynamic changes of Fe2+ and Fe3+ in solution can be accurately monitored by T-CDs within the total iron concentration of 50 μM, which is probably the most sensitive dual-mode probe reported so far. In addition, this probe is successfully applied to detect the Fe2+/3+ concentration in cells, demonstrating a huge application potential in the sensing of the dynamic equilibrium of these important transition metals during the cell metabolism or stimulated process.

Graphical abstract

The dynamic changes of Fe2+ and Fe3+ in solution can be accurately monitored by carbon dots based on the colorimetric and fluorometric dual-mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this published article and its supplementary information files.

References

  1. D. Galaris, V. Skiada, A. Barbouti, Cancer Lett. 266, 21–29 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. F. Ferreira, K.A. Catalao, R.B.R. Mesquita, A. Rangel, Anal. Bioanal. Chem. 413, 7463–7472 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. A. Siddique, K.V. Kowdley, Aliment. Pharmacol. Ther. 35, 876–893 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. K. Salnikow, Semin. Cancer Biol. 76, 189–194 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. S.K. Sahoo, D. Sharma, R.K. Bera, G. Crisponi, J.F. Callan, Chem. Soc. Rev. 41, 7195–7227 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. S. von Haehling, E.A. Jankowska, D.J. van Veldhuisen, P. Ponikowski, S.D. Anker, Nat. Rev. Cardiol. 12, 659–669 (2015)

    Article  Google Scholar 

  7. S.V. Torti, F.M. Torti, Nat. Rev. Cancer 13, 342–355 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Maity, N. Parshi, C. Prodhan, K. Chaudhuri, J. Ganguly, Carbohydr. Polym. 193, 119–128 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. J.L. Kolanowski, F. Liu, E.J. New, Chem. Soc. Rev. 47, 195–208 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. X. Li, X. Gao, W. Shi, H. Ma, Chem. Rev. 114, 590–659 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. T. Hirayama, H. Nagasawa, J. Clin. Biochem. Nutr. 60, 39–48 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. R. Shingles, M. North, R.E. McCarty, Plant Physiol. 128, 1022–1030 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Maiti, Z. Aydin, Y. Zhang, M. Guo, Dalton Trans. 44, 8942–8949 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. L. Ai, Y. Yang, B. Wang, J. Chang, Z. Tang, B. Yang, S. Lu, Sci. Bull. 66, 839–856 (2021)

    Article  CAS  Google Scholar 

  15. C. Wang, H. Shi, M. Yang, Z. Yao, B. Zhang, E. Liu, X. Hu, W. Xue, J. Fan, Colloid Surf. B-Biointerfaces 205, 111874–111881 (2021)

    Article  CAS  Google Scholar 

  16. L. Hou, D. Chen, R. Wang, R. Wang, H. Zhang, Z. Zhang, Z. Nie, S. Lu, Angew. Chem. Int. Ed. 60, 6581–6592 (2021)

    Article  CAS  Google Scholar 

  17. B. Wang, Z. Sun, J. Yu, G.I.N. Waterhouse, S. Lu, B. Yang, SmartMat. 3, 337–348 (2022)

    Article  CAS  Google Scholar 

  18. H. Qi, M. Teng, M. Liu, S. Liu, J. Li, H. Yu, C. Teng, Z. Huang, H. Liu, Q. Shao, A. Umar, T. Ding, Q. Gao, Z. Guo, J. Colloid Interface Sci. 539, 332–341 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. X. Miao, X. Yan, D. Qu, D. Li, F.F. Tao, Z. Sun, A.C.S. Appl, Mater. Interfaces 9, 18549–18556 (2017)

    Article  CAS  Google Scholar 

  20. X. Lv, H. Man, L. Dong, J. Huang, X. Wang, Food Chem. 326, 126935–126941 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. M. Lu, L. Zhou, Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 101, 352–359 (2019)

    Article  CAS  Google Scholar 

  22. C. Wang, J. Zhou, G. Ran, F. Li, Z. Zhong, Q. Song, Q. Dong, J. Mater. Chem. C 5, 434–443 (2017)

    Article  CAS  Google Scholar 

  23. S. Xiao, Z. Chu, J. Zuo, X. Zhao, C. Huang, L. Zhang, J. Nanopart. Res. 19, 84–91 (2017)

    Article  Google Scholar 

  24. L. Li, X. Jiao, Y. Zhang, C. Cheng, K. Huang, L. Xu, Sens. Actuator B-Chem. 268, 84–92 (2018)

    Article  CAS  Google Scholar 

  25. A. Iqbal, Y. Tian, X. Wang, D. Gong, Y. Guo, K. Iqbal, Z. Wang, W. Liu, W. Qin, Sens. Actuator B-Chem. 237, 408–415 (2016)

    Article  CAS  Google Scholar 

  26. X. Sun, J. Zhang, X. Wang, J. Zhao, W. Pan, G. Yu, Y. Qu, J. Wang, Arab. J. Chem. 13, 5075–5083 (2020)

    Article  CAS  Google Scholar 

  27. H.J. Yoo, B.E. Kwak, D.H. Kim, Carbon 183, 560–570 (2021)

    Article  CAS  Google Scholar 

  28. Z. Tian, X. Zhang, D. Li, D. Zhou, P. Jing, D. Shen, S. Qu, R. Zboril, A.L. Rogach, Adv. Opt. Mater. 5, 1700416–1700424 (2017)

    Article  Google Scholar 

  29. J. Liu, R. Li, B. Yang, ACS Central Sci. 6, 2179–2195 (2020)

    Article  CAS  Google Scholar 

  30. C. Wang, Y. He, Y. Xu, L. Sui, T. Jiang, G. Ran, Q. Song, J. Mater. Chem. A 10, 2085–2095 (2022)

    Article  Google Scholar 

  31. X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao, H. Fan, Z. Sun, Adv. Mater. 30, 1704740–1704747 (2018)

    Article  Google Scholar 

  32. H. Li, S. Han, B. Lyu, T. Hong, S. Zhi, L. Xu, F. Xue, L. Sai, J. Yang, X. Wang, B. He, Chin. Chem. Lett. 32, 2887–2892 (2021)

    Article  CAS  Google Scholar 

  33. F. Arcudi, L. Dordevic, M. Prato, Angew. Chem. Int. Ed. 56, 4170–4173 (2017)

    Article  CAS  Google Scholar 

  34. D. Qu, Z. Sun, Mat. Chem. Front. 4, 400–420 (2020)

    Article  CAS  Google Scholar 

  35. C. Ding, Z. Deng, J. Chen, Y. Jin, Colloid Surf. B-Biointerfaces 189, 110838–110843 (2020)

    Article  CAS  Google Scholar 

  36. R. Selvaraju, G. Thiruppathi, A. Raja, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 93, 260–265 (2012)

    Article  CAS  Google Scholar 

  37. N.K.R. Bogireddy, R. Cruz Silva, M.A. Valenzuela, V. Agarwal, J. Hazard. Mater. 386, 121643–121653 (2020)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Qiao, X. Hu, Y. Liu, C. Chen, H. Xu, D. Hou, P. Hu, Y. Huang, J. Mater. Chem. A 1, 10375–10381 (2013)

    Article  CAS  Google Scholar 

  39. L. Jiang, H. Ding, S. Lu, T. Geng, G. Xiao, B. Zou, H. Bi, Angew. Chem. Int. Ed. 59, 9986–9991 (2020)

    Article  CAS  Google Scholar 

  40. Y. Xu, C. Wang, T. Jiang, G. Ran, Q. Song, J. Hazard. Mater. 427, 128092 (2022)

    Article  CAS  PubMed  Google Scholar 

  41. T. Zhang, F. Zhao, L. Li, B. Qi, D. Zhu, J. Lu, C. Lu, A.C.S. Appl, Mater. Interfaces 10, 19796–19805 (2018)

    Article  CAS  Google Scholar 

  42. S. Lu, L. Sui, J. Liu, S. Zhu, A. Chen, M. Jin, B. Yang, Adv. Mater. 29, 1603443–1603448 (2017)

    Article  Google Scholar 

  43. T. Garcia-Millan, T.A. Swift, D.J. Morgan, R.L. Harniman, B. Masheder, S. Hughes, S.A. Davis, T.A.A. Oliver, M.C. Galan, Nanoscale 14, 6930–6940 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. T. Han, Y. Wang, S. Ma, M. Li, N. Zhu, S. Tao, J. Xu, B. Sun, Y. Jia, Y. Zhang, S. Zhu, B. Yang, Adv. Sci. 9, 2203474 (2022)

    Article  CAS  Google Scholar 

  45. T. Zhang, J. Zhu, Y. Zhai, H. Wang, X. Bai, B. Dong, H. Wang, H. Song, Nanoscale 9, 13042–13051 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. M. Zhang, R. Su, J. Zhong, L. Fei, W. Cai, Q. Guan, W. Li, N. Li, Y. Chen, L. Cai, Q. Xu, Nano Res. 12, 815–821 (2019)

    Article  CAS  Google Scholar 

  47. Q. Su, C. Lu, X. Yang, Carbon 152, 609–615 (2019)

    Article  CAS  Google Scholar 

  48. T. Guo, X. Wang, X. Hong, W. Xu, Y. Shu, J. Wang, Colloid Surf. B-Biointerfaces 216, 112552–112561 (2022)

    Article  CAS  Google Scholar 

  49. S.D. Tokarev, Y.V. Fedorov, O.A. Fedorova, Mendeleev Commun. 30, 445–448 (2020)

    Article  CAS  Google Scholar 

  50. M.V. Martínez, C.R. Rivarola, M.C. Miras, C.A. Barbero, Sens. Actuator B-Chem. 241, 19–32 (2017)

    Article  Google Scholar 

  51. L. Mosca, S. Karimi Behzad, P. Anzenbacher Jr., J. Am. Chem. Soc. 137, 7967–7969 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. H. Liu, R. Wei, Y. Xiang, A. Tong, Anal. Methods 7, 753–758 (2015)

    Article  CAS  Google Scholar 

  53. K. Dayanidhi, N. Sheik Eusuff, New J. Chem. 45, 9936–9943 (2021)

    Article  CAS  Google Scholar 

  54. B.P. Esposito, S. Epsztejn, W. Breuer, Z.I. Cabantchik, Anal. Biochem. 304, 1–18 (2002)

    Article  CAS  PubMed  Google Scholar 

  55. P. Wlodarczyk, S. Komarneni, R. Roy, W.B. White, J. Mater. Chem. 6, 1967–1969 (1996)

    Article  CAS  Google Scholar 

  56. Y. Gong, X. Zhang, G. Mao, L. Su, H. Meng, W. Tan, S. Feng, G. Zhang, Chem. Sci. 7, 2275–2285 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. C. Wang, T. Hu, Z. Wen, J. Zhou, X. Wang, Q. Wu, C. Wang, J. Colloid Interface Sci. 521, 33–41 (2018)

    Article  CAS  PubMed  Google Scholar 

  58. S. Cong, Z. Jiang, R. Zhang, H. Lv, J. Guo, L. Zhang, X. Lu, Anal. Chem. 94, 6695–6702 (2022)

    Article  CAS  PubMed  Google Scholar 

  59. T. Marshall-Roth, N.J. Libretto, A.T. Wrobel, K.J. Anderton, M.L. Pegis, N.D. Ricke, T.V. Voorhis, J.T. Miller, Y. Surendranath, Nat. Commun. 11, 5283–5296 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. X. Cui, S. Yang, X. Yan, J. Leng, S. Shuang, P.M. Ajayan, Z. Zhang, Adv. Funct. Mater. 02026, 5708–5717 (2016)

    Article  Google Scholar 

  61. F. Jaouen, J. Herranz, M. Lefevre, J.P. Dodelet, U.I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J.R. Dahn, T. Olson, S. Pylypenko, P. Atanassov, E.A. Ustinov, A.C.S. Appl, Mater. Interfaces 1, 1623–1639 (2009)

    Article  CAS  Google Scholar 

  62. J. Zhou, H. Song, L. Ma, X. Chen, RSC Adv. 1, 782–791 (2011)

    Article  CAS  Google Scholar 

  63. C. Combellas, M. Delamar, F. Kanoufi, J. Pinson, F.I. Podvorica, Chem. Mater. 17, 3968–3975 (2005)

    Article  CAS  Google Scholar 

  64. Y. Zhao, X. Zhai, L. Shao, L. Li, Y. Liu, X. Zhang, J. Liu, F. Meng, Y. Fu, J. Mater. Chem. C 9, 15840–15847 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural National Science Foundation of China (51973083), Fundamental Research Funds for the Central Universities (JUSRP22027) and Scientific Research Project of Jiangsu Commission of Health (M2020005). Dr. Chan Wang would like to acknowledge the work of Central Laboratory, School of Chemical and Material Engineering, Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5026 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Huang, J., Ran, G. et al. A colorimetric and fluorometric dual-mode carbon dots probe derived from phenanthroline precursor for the selective detection of Fe2+ and Fe3+. ANAL. SCI. 39, 325–333 (2023). https://doi.org/10.1007/s44211-022-00236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00236-x

Keywords

Navigation