Skip to main content
Log in

Additively Manufactured Lightweight and Hard High-Entropy Alloys by Thermally Activated Solvent Extraction

  • Original Paper
  • Published:
High Entropy Alloys & Materials Aims and scope Submit manuscript

Abstract

We introduce a scalable thermally activated solvent extraction based additive manufacturing process to produce lightweight, yet high-hardness, multicomponent alloys. The cost-effective process involves layer-wise curing a slurry composed of AlCoCrFeNi high-entropy alloy powder and a transparent ultraviolet-sensitive photopolymer, by stereolithography 3D printing followed by sintering. The alloy pellets assume a density of 4.3 g/cm3 and hardness of 400 HV with a BCC/FCC multiphase microstructure. A broad distribution in the particle sizes of the alloy powder augments the manufacturing process because the smaller particles operate as fillers to weld the larger ones. The relatively higher surface energy of the smaller particles limits the activation energy required for the onset of particulate diffusion that instigates the necking. Microscopic characterization reveals passivating surface oxides on the powder particles fabricating an alloy part suitable for harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors will make available, upon request, the data used in the applications described in this work. It is understood that the data provided will not be for commercial use.

References

  1. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004). https://doi.org/10.1016/J.MSEA.2003.10.257

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). https://doi.org/10.1002/ADEM.200300567

    Article  CAS  Google Scholar 

  3. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  ADS  Google Scholar 

  4. P. Sharma, N. Naushin, S. Rohila, A. Tiwari, Magnesium containing high entropy alloys. in Magnesium Alloys Structure and Properties (IntechOpen, 2022). https://doi.org/10.5772/intechopen.98557

  5. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  6. Z. Ye, C. Li, J. Gu, Phase stability in high-entropy alloys: the role of configurational entropy. JOM 74, 4154–4161 (2022). https://doi.org/10.1007/s11837-022-05307-y

    Article  CAS  ADS  Google Scholar 

  7. X. Yan, Y. Zhang, Functional properties and promising applications of high entropy alloys. Scr. Mater. 187, 188–193 (2020). https://doi.org/10.1016/J.SCRIPTAMAT.2020.06.017

    Article  CAS  Google Scholar 

  8. O. El-Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, D. Sobieraj, J.S. Wróbel, D. Nguyen-Manh, S.A. Maloy, E. Martinez, Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv. 5, eaav2002 (2019). https://doi.org/10.1126/SCIADV.AAV2002/SUPPL_FILE/AAV2002_SM.PDF

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. D. Zhang, H. Zhao, X. Wu, Y. Deng, Z. Wang, Y. Han, H. Li, Y. Shi, X. Chen, S. Li, J. Lai, B. Huang, L. Wang, D. Zhang, H. Zhao, X. Wu, Y. Deng, Z. Wang, Y. Han, H. Li, Y. Shi, J. Lai, L. Wang, X. Chen, S. Li, B. Huang, Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys. Adv. Funct. Mater. 31, 2006939 (2021). https://doi.org/10.1002/ADFM.202006939

    Article  CAS  Google Scholar 

  10. X. Jin, J. Bi, L. Zhang, Y. Zhou, X. Du, Y. Liang, B. Li, A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J. Alloys Compd. 770, 655–661 (2019). https://doi.org/10.1016/J.JALLCOM.2018.08.176

    Article  CAS  Google Scholar 

  11. Y. Zhang, M. Liu, J. Sun, G. Li, R. Zheng, W. Xiao, C. Ma, Excellent thermal stability and mechanical properties of bulk nanostructured FeCoNiCu high entropy alloy. Mater. Sci. Eng. A 835, 142670 (2022). https://doi.org/10.1016/J.MSEA.2022.142670

    Article  CAS  Google Scholar 

  12. K.V. Yusenko, S. Riva, P.A. Carvalho, M.V. Yusenko, S. Arnaboldi, A.S. Sukhikh, M. Hanfland, S.A. Gromilov, First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 138, 22–27 (2017). https://doi.org/10.1016/J.SCRIPTAMAT.2017.05.022

    Article  CAS  Google Scholar 

  13. S. Dixit, S. Rodriguez, M.R. Jones, P. Buzby, R. Dixit, N. Argibay, F.W. DelRio, H.H. Lim, D. Fleming, Refractory high-entropy alloy coatings for high-temperature aerospace and energy applications. J. Therm. Spray Technol. 31, 1021–1031 (2022). https://doi.org/10.1007/S11666-022-01324-0/FIGURES/8

    Article  CAS  ADS  Google Scholar 

  14. K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, Dual-phase high-entropy alloys for high-temperature structural applications. J. Alloys Compd. 728, 1235–1238 (2017). https://doi.org/10.1016/J.JALLCOM.2017.09.089

    Article  CAS  Google Scholar 

  15. A.E. Afolabi, A.P.I. Popoola, O.M. Popoola, High entropy alloys: advance material for landing gear aerospace applications, in Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (Springer, Cham, 2020), pp. 1–27. https://doi.org/10.1007/978-3-030-11155-7_179-1

  16. C.L.P. Pavithra, S.R. Dey, Advances on multi-dimensional high-entropy alloy nanoarchitectures: unconventional strategies and prospects. Nano Select. 4, 48–78 (2023). https://doi.org/10.1002/nano.202200081

    Article  CAS  Google Scholar 

  17. I. Gibson, D. Rosen, B. Stucker, M. Khorasani, Development of additive manufacturing technology. in Additive Manufacturing Technologies (Springer, Cham, 2021), pp. 23–51. https://doi.org/10.1007/978-3-030-56127-7_2

  18. W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014). https://doi.org/10.1007/s11665-014-0958-z

    Article  CAS  Google Scholar 

  19. W. Tao, M.C. Leu, Design of lattice structure for additive manufacturing. in 2016 International Symposium on Flexible Automation (ISFA), IEEE, 2016, pp. 325–332. https://doi.org/10.1109/ISFA.2016.7790182

  20. A. Kumar, L. Collini, A. Daurel, J.-Y. Jeng, Design and additive manufacturing of closed cells from supportless lattice structure. Addit. Manuf. 33, 101168 (2020). https://doi.org/10.1016/j.addma.2020.101168

    Article  CAS  Google Scholar 

  21. Z.U. Arif, M.Y. Khalid, E. ur Rehman, Laser-aided additive manufacturing of high entropy alloys: processes, properties, and emerging applications. J. Manuf. Process. 78, 131–171 (2022). https://doi.org/10.1016/j.jmapro.2022.04.014

    Article  Google Scholar 

  22. C. Kenel, N.P.M. Casati, D.C. Dunand, 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices. Nat. Commun. 10, 904 (2019). https://doi.org/10.1038/s41467-019-08763-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. S.Y. Ahn, F. Haftlang, E.S. Kim, J.S. Lee, S.G. Jeong, J.B. Seol, H. Choi, H.S. Kim, Cellular structure engineering of additive manufactured CoCrFeMnNi high-entropy composite: the role of hard ceramic reinforcements in elemental segregation of constitutive elements. Addit. Manuf. Lett. 7, 100172 (2023). https://doi.org/10.1016/j.addlet.2023.100172

    Article  Google Scholar 

  24. W. Li, Y. Huang, Z. Xie, H. Chen, W. Li, B. Liu, B. Wang, Mechanical property and cellular structure of an additive manufactured FeCoNiCrMo0.2 high-entropy alloy at high-velocity deformation. J. Mater. Sci. Technol. 139, 156–166 (2023). https://doi.org/10.1016/j.jmst.2022.08.013

    Article  CAS  Google Scholar 

  25. S. Peng, S. Mooraj, R. Feng, L. Liu, J. Ren, Y. Liu, F. Kong, Z. Xiao, C. Zhu, P.K. Liaw, W. Chen, Additive manufacturing of three-dimensional (3D)-architected CoCrFeNiMn high- entropy alloy with great energy absorption. Scr. Mater. 190, 46–51 (2021). https://doi.org/10.1016/j.scriptamat.2020.08.028

    Article  CAS  Google Scholar 

  26. C. Han, Q. Fang, Y. Shi, S. Beng Tor, C. Kai Chua, K. Zhou, C. Han, S.B. Tor, K. Zhou, Q. Fang, Y. Shi, C.K. Chua, Recent advances on high-entropy alloys for 3D printing. Adv. Mater. 32, 1903855 (2020). https://doi.org/10.1002/ADMA.201903855

    Article  CAS  Google Scholar 

  27. S. Chen, Y. Tong, P.K. Liaw, Additive manufacturing of high-entropy alloys: a review. Entropy 20, 937 (2018). https://doi.org/10.3390/E20120937

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. A. Ostovari Moghaddam, N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, E.A. Trofimov, Additive manufacturing of high entropy alloys: a practical review. J. Mater. Sci. Technol. 77, 131–162 (2021). https://doi.org/10.1016/J.JMST.2020.11.029

    Article  Google Scholar 

  29. S. Guan, J. Ren, S. Mooraj, Y. Liu, S. Feng, S. Zhang, J. Liu, X. Fan, P.K. Liaw, W. Chen, Additive manufacturing of high-entropy alloys: microstructural metastability and mechanical behavior. J. Phase Equilibria Diffus. 42, 748–771 (2021). https://doi.org/10.1007/s11669-021-00913-w

    Article  CAS  Google Scholar 

  30. C. Kenel, N.P.M. Casati, D.C. Dunand, 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices. Nat. Commun. 10, 1–8 (2019). https://doi.org/10.1038/s41467-019-08763-4

    Article  CAS  ADS  Google Scholar 

  31. Y. Zhang, T. Bian, X. Shen, Z. Wang, S. Ye, S. Feng, K. Yu, C. Ding, P. Yu, Sintering mechanism and microstructure evolution of a CoCrFeNiMn high entropy alloy fabricated by metal injection molding. J. Alloys Compd. 868, 158711 (2021). https://doi.org/10.1016/J.JALLCOM.2021.158711

    Article  CAS  Google Scholar 

  32. N.E. Putra, M.A. Leeflang, M. Minneboo, P. Taheri, L.E. Fratila-Apachitei, J.M.C. Mol, J. Zhou, A.A. Zadpoor, Extrusion-based 3D printed biodegradable porous iron. Acta Biomater. 121, 741–756 (2021). https://doi.org/10.1016/J.ACTBIO.2020.11.022

    Article  CAS  PubMed  Google Scholar 

  33. N.E. Putra, M.A. Leeflang, P. Taheri, L.E. Fratila-Apachitei, J.M.C. Mol, J. Zhou, A.A. Zadpoor, Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomater. 134, 774–790 (2021). https://doi.org/10.1016/J.ACTBIO.2021.07.042

    Article  CAS  PubMed  Google Scholar 

  34. G.K. Meenashisundaram, Z. Xu, M.L.S. Nai, S. Lu, J.S. Ten, J. Wei, Binder jetting additive manufacturing of high porosity 316L stainless steel metal foams. Materials 13, 3744 (2020). https://doi.org/10.3390/MA13173744

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. P. Mondal, A. Das, A. Wazeer, A. Karmakar, Biomedical porous scaffold fabrication using additive manufacturing technique: porosity, surface roughness and process parameters optimization. Int. J. Lightweight Mater. Manuf. 5, 384–396 (2022). https://doi.org/10.1016/j.ijlmm.2022.04.005

    Article  CAS  Google Scholar 

  36. R. Otto, C. Kiener, Y. Küsters, K. Sørby, Additive manufacturing of open porous functional structures: roadmap from manufacturing to the application. Procedia CIRP. 112, 334–339 (2022). https://doi.org/10.1016/j.procir.2022.09.102

    Article  Google Scholar 

  37. D. Ren, X. Ba, Z. Zhang, Z. Zhang, K. Zhao, L. Liu, Wire arc additive manufacturing of porous metal using welding pore defects. Mater. Des. 233, 112213 (2023). https://doi.org/10.1016/j.matdes.2023.112213

    Article  Google Scholar 

  38. Y.C. Wu, C.N. Kuo, M.Y. Shie, Y.L. Su, L.J. Wei, S.Y. Chen, J.C. Huang, Structural design and mechanical response of gradient porous Ti-6Al-4V fabricated by electron beam additive manufacturing. Mater. Des. 158, 256–265 (2018). https://doi.org/10.1016/j.matdes.2018.08.027

    Article  CAS  Google Scholar 

  39. K. Kusada, H. Kobayashi, R. Ikeda, Y. Kubota, M. Takata, S. Toh, T. Yamamoto, S. Matsumura, N. Sumi, K. Sato, K. Nagaoka, H. Kitagawa, Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability. J. Am. Chem. Soc. 136, 1864–1871 (2014). https://doi.org/10.1021/ja409464g

    Article  CAS  PubMed  Google Scholar 

  40. W. Ji, W. Qi, S. Tang, H. Peng, S. Li, Hydrothermal synthesis of ultrasmall Pt nanoparticles as highly active electrocatalysts for methanol oxidation. Nanomaterials 5, 2203–2211 (2015). https://doi.org/10.3390/nano5042203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. Wu, K. Kusada, Y. Nanba, M. Koyama, T. Yamamoto, T. Toriyama, S. Matsumura, O. Seo, I. Gueye, J. Kim, L.S. RosanthaKumara, O. Sakata, S. Kawaguchi, Y. Kubota, H. Kitagawa, Noble-metal high-entropy-alloy nanoparticles: atomic-level insight into the electronic structure. J. Am. Chem. Soc. 144, 3365–3369 (2022). https://doi.org/10.1021/jacs.1c13616

    Article  CAS  PubMed  Google Scholar 

  42. Z. Xu, Z. Zhu, P. Wang, G.K. Meenashisundaram, S.M.L. Nai, J. Wei, Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing. Addit. Manuf. 35, 101441 (2020). https://doi.org/10.1016/J.ADDMA.2020.101441

    Article  CAS  Google Scholar 

  43. P. Sreeramagiri, P. Sharma, C. Das, G. Balasubramanian, Examining solid-state sintering of AlCoCrFeNi multi-principal element alloy by molecular simulations. Comput. Mater. Sci. 216, 111875 (2023). https://doi.org/10.1016/j.commatsci.2022.111875

    Article  CAS  Google Scholar 

  44. T.M. Butler, M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd. 674, 229–244 (2016). https://doi.org/10.1016/J.JALLCOM.2016.02.257

    Article  CAS  Google Scholar 

  45. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44–51 (2012). https://doi.org/10.1016/J.INTERMET.2012.03.005

    Article  Google Scholar 

  46. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57–64 (2009). https://doi.org/10.1016/J.JALLCOM.2009.08.090

    Article  CAS  Google Scholar 

  47. C. Li, J.C. Li, M. Zhao, Q. Jiang, Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. J. Alloys Compd. 504, S515–S518 (2010). https://doi.org/10.1016/J.JALLCOM.2010.03.111

    Article  Google Scholar 

  48. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, Y. Wang, Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Mater. Sci. Eng. A 648, 15–22 (2015). https://doi.org/10.1016/J.MSEA.2015.09.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Foundation (NSF) through the award CMMI-1944040.

Author information

Authors and Affiliations

Authors

Contributions

PS: Methodology, Formal Analysis, Investigation, Validation, Writing—Original Draft, Writing—Review & Editing; CD: Methodology, Investigation; PS: Methodology, Validation, Writing—Review & Editing; GB: Formal Analysis, Investigation, Writing—Review & Editing, Supervision, Funding Acquisition.

Corresponding author

Correspondence to Ganesh Balasubramanian.

Ethics declarations

Competing interests

The authors declare no competing financial or non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1302 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Das, C., Sreeramagiri, P. et al. Additively Manufactured Lightweight and Hard High-Entropy Alloys by Thermally Activated Solvent Extraction. High Entropy Alloys & Materials (2024). https://doi.org/10.1007/s44210-024-00029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44210-024-00029-z

Keywords

Navigation