Skip to main content

Advertisement

Log in

Spectroscopic Characterization of Biomaterials for Tissue Engineering Applications

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Biomaterials are materials intended to interact with biological systems for the purposes of treatment, enhancement, or replacement of biological functions defined as material used in medical devices. Biomaterials in tissue engineering have been studied many years, and their level of innovation has increased significantly recently. In the field of tissue engineering, a wide range of biomaterial has been shown to be effective in combination with naturally derived and synthetic polymers. All biomaterials shall satisfy several criteria, e.g. adequate strength, high corrosion resistance, bio-adhesion, biocompatibility, high durability, and lower friction coefficients. To analyse the properties of biomaterials, various characterization techniques are used. Characterizing biomaterials for tissue engineering is a multidisciplinary endeavour that relies on various tools and techniques, encompassing chemical, physical, mechanical, and biological aspects. This review outlines key characterization techniques available to researchers, considering the latest developments and challenges in tissue engineering. It aims to provide a comprehensive understanding for researchers in this field, facilitating the recognition of existing instruments and techniques for developing and discovering new materials, thereby expanding their applications in tissue engineering. The review also includes an examination of literature, presenting main results from the characterization of diverse biomaterials in tabular form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated or examined in the ongoing inquiry can be obtained upon a reasonable request made to the corresponding author.

References

  1. E. Altun, M.O. Aydogdu, S.O. Togay, A.Z. Sengil, N. Ekren, M.E. Haskoylu, E.T. Oner, N.A. Altuncu, G. Ozturk, M. Crabbe-Mann, J. Ahmed, O. Gunduz, M. Edirisinghe, Bioinspired scaffold induced regeneration of neural tissue. Eur. Polym. J. 114, 98–108 (2019)

    Article  CAS  Google Scholar 

  2. N.M. Ergul, S. Unal, I. Kartal, C. Kalkandelen, N. Ekren, O. Kilic, L. Chi-Chang, O. Gunduz, 3D printing of chitosan/ poly(vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard-tissue engineering. Polym. Test.. Test 79, 106006 (2019)

    Article  CAS  Google Scholar 

  3. H. Izgis, E. Ilhan, C. Kalkandelen, E. Celen, M.M. Guncu, H. TurkogluSasmazel, O. Gunduz, D. Ficai, A. Ficai, G. Constantinescu, Manufacturing of zinc oxide nanoparticle (ZnO NP)-loaded polyvinyl alcohol (PVA) nanostructured mats using ginger extract for tissue engineering applications. Nanomaterials 12, 3040 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roy, M., Bandyopadhyay, A., & Bose, S. (2013). Characterization of Biomaterials: Chapter 7.2. Mechanical Properties of Bioceramic Coatings on Medical Implants. Elsevier Inc. Chapters

  5. M.O. Aydogdu, E.T. Oner, N. Ekren, G. Erdemir, S.E. Kuruca, E. Yuca, M.S. Bostan, M.S. Eroglu, F. Ikram, M. Uzun, O. Gunduz, Comparative characterization of the hydrogel added PLA/β-TCP scaffolds produced by 3D bioprinting. Bioprinting 13, e00046 (2019)

    Article  Google Scholar 

  6. D. Aki, S. Ulag, S. Unal, M. Sengor, N. Ekren, C.C. Lin, H. Yılmazer, C.B. Ustundag, D.M. Kalaskar, O. Gunduz, 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Mater. Des. 196, 109094 (2020)

    Article  CAS  Google Scholar 

  7. Y. Moukbil, B. Isindag, V. Gayir, B. Ozbek, M.E. Haskoylu, E.T. Oner, F.N. Oktar, F. Ikram, M. Sengor, O. Gunduz, 3D printed bioactive composite scaffolds for bone tissue engineering. Bioprinting 17, e00064 (2020)

    Article  Google Scholar 

  8. W.D. Wallis, The encyclopedia britannica. Am. Anthropol. 13, 45 (1911)

    Article  Google Scholar 

  9. G. Agrawal, S.K. Samal, Raman spectroscopy for advanced polymeric biomaterials. ACS Biomater. Sci. Eng.Biomater. Sci. Eng. 4, 1285–1299 (2018)

    Article  CAS  Google Scholar 

  10. M.P. Raut, E. Asare, S.M.D. Syed Mohamed, E.N. Amadi, I. Roy, Bacterial cellulose-based blends and composites: versatile biomaterials for tissue engineering applications. Int. J. Mol. Sci. 24, 986 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Shafiee, A. Atala, Tissue engineering: toward a new era of medicine. Annu. Rev. Med.. Rev. Med. 68, 29–40 (2017)

    Article  CAS  Google Scholar 

  12. J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol. Immunol 20, 78 (2008)

    Google Scholar 

  13. D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. A. Khademhosseini, R. Langer, A decade of progress in tissue engineering. Nat. Protoc. 11, 1775–1781 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. O. Veiseh, J.C. Doloff, M. Ma, A.J. Vegas, H.H. Tam, A.R. Bader, J. Li, E. Langan, J. Wyckoff, W.S. Loo, S. Jhunjhunwala, A. Chiu, S. Siebert, K. Tang, J. Hollister-Lock, S. Aresta-Dasilva, M. Bochenek, J. Mendoza-Elias, Y. Wang, M. Qi, D.M. Lavin, M. Chen, N. Dholakia, R. Thakrar, I. Lacík, G.C. Weir, J. Oberholzer, D.L. Greiner, R. Langer, D.G. Anderson, Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A.J. Vegas, O. Veiseh, J.C. Doloff, M. Ma, H.H. Tam, K. Bratlie, J. Li, A.R. Bader, E. Langan, K. Olejnik, P. Fenton, J.W. Kang, J. Hollister-Locke, M.A. Bochenek, A. Chiu, S. Siebert, K. Tang, S. Jhunjhunwala, S. Aresta-Dasilva, N. Dholakia, R. Thakrar, T. Vietti, M. Chen, J. Cohen, K. Siniakowicz, M. Qi, J. McGarrigle, S. Lyle, D.M. Harlan, D.L. Greiner, J. Oberholzer, G.C. Weir, R. Langer, D.G. Anderson, Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Bhattacharjee, S.M. Zehnder, K.G. Rowe, S. Jain, R.M. Nixon, W.G. Sawyer, T.E. Angelini, Writing in the granular gel medium. Sci. Adv. 1, e1500655 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  18. K. Christensen, C. Xu, W. Chai, Z. Zhang, J. Fu, Y. Huang, Freeform inkjet printing of cellular structures with bifurcations. Biotechnol. Bioeng. 112, 1047–1055 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. C.B. Highley, C.B. Rodell, J.A. Burdick, Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 9–147 (2015)

    Article  Google Scholar 

  20. S. Khalil, J. Nam, W. Sun, Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp. J. 11, 9–17 (2005)

    Article  Google Scholar 

  21. H.W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, A. Atala, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol.Biotechnol. 34, 312–319 (2016)

    Article  CAS  Google Scholar 

  22. G.A. Sydney, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016)

    Article  Google Scholar 

  23. H.C. Ott, T.S. Matthiesen, S.K. Goh, L.D. Black, S.M. Kren, T.I. Netoff, D.A. Taylor, Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. T.Y. Lu, B. Lin, J. Kim, M. Sullivan, K. Tobita, G. Salama, L. Yang, Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat. Commun.Commun. 4, 927–933 (2013)

    Google Scholar 

  25. H.C. Ott, B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, J.P. Vacanti, Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16, 8 (2010)

    Article  Google Scholar 

  26. T.H. Petersen, E.A. Calle, L. Zhao, E.J. Lee, L. Gui, M.S.B. Raredon, K. Gavrilov, T. Yi, Z.W. Zhuang, C. Breuer, E. Herzog, L.E. Niklason, Tissue-engineered lungs for in vivo implantation. Science 329, 538–541 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. B.E. Uygun, A. Soto-Gutierrez, H. Yagi, M.L. Izamis, M.A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M.L. Yarmush, K. Uygun, Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16, 814–820 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. P.M. Baptista, M.M. Siddiqui, G. Lozier, S.R. Rodriguez, A. Atala, S. Soker, The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53, 604–617 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. D.C. Sullivan, S.H. Mirmalek-Sani, D.B. Deegan, P.M. Baptista, T. Aboushwareb, A. Atala, J.J. Yoo, Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33, 7756–7764 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. J.J. Song, J.P. Guyette, S.E. Gilpin, G. Gonzalez, J.P. Vacanti, H.C. Ott, Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 19, 646–651 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S.K. Goh, S. Bertera, P. Olsen, J.E. Candiello, W. Halfter, G. Uechi, M. Balasubramani, S.A. Johnson, B.M. Sicari, E. Kollar, S.F. Badylak, I. Banerjee, Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 34, 6760–6772 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Conev, E.E. Litsa, M.R. Perez, M. Diba, A.G. Mikos, L.E. Kavraki, Machine learning-guided three-dimensional printing of tissue engineering scaffolds. Tissue Eng. Part A 26, 1359–1368 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Xu, H. Ge, X. Zhou, J. Yan, Q. Chi, Z. Zhang, Prediction of vascular tissue engineering results with artificial neural networks. J. Biomed. Inform. 38, 417–421 (2005)

    Article  PubMed  Google Scholar 

  34. L.Y. Sujeeun, N. Goonoo, H. Ramphul, I. Chummun, F. Gimié, S. Baichoo, A. Bhaw-Luximon, Correlating in vitro performance with physico-chemical characteristics of nanofibrous scaffolds for skin tissue engineering using supervised machine learning algorithms: Scaffolds and machine learning. R. Soc. Open Sci. 7, 201293 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M.D.B. Barrera, F. Franco-Martínez, A.D. Lantada, Artificial intelligence aided design of tissue engineering scaffolds employing virtual tomography and 3d convolutional neural networks. Materials 14, 5278 (2021)

    Article  Google Scholar 

  36. M. Ogunsanya, S. Desai, Physics-based and data-driven modeling for biomanufacturing 4.0. Manuf Lett 36, 91–95 (2023)

    Article  Google Scholar 

  37. D. Williams, Benefit and risk in tissue engineering. Mater. Today 7, 24–29 (2004)

    Article  CAS  Google Scholar 

  38. A.G. Niculescu, A.M. Grumezescu, An up-to-date review of biomaterials application in wound management. Polymers (Basel) 14, 421 (2022)

    Article  CAS  PubMed  Google Scholar 

  39. M. Shabanian, M. Hajibeygi, A. Raeisi, FTIR characterization of layered double hydroxides and modified layered double hydroxides. Layer. Double Hydroxide Polymer Nanocomp. 5, 77–101 (2020)

    Article  Google Scholar 

  40. Z. Movasaghi, S. Rehman, I.U. Rehman, Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev.Spectrosc. Rev. 43, 134–179 (2008)

    Article  CAS  Google Scholar 

  41. A. Dutta, Fourier transform infrared spectroscopy spectroscopic. Methods Nanomater. Charact. 2, 73–93 (2017)

    Google Scholar 

  42. J. Grdadolnik, ATR-FTIR spectroscopy: its advantages and limitations. Acta Chim. Slov. Chim. Slov. 49, 631–642 (2002)

    CAS  Google Scholar 

  43. H. Tiernan, B. Byrne, S.G. Kazarian, ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals. Spectrochim. Acta A 241, 3–37 (2020)

    Article  Google Scholar 

  44. H. Kaur, B. Rana, D. Tomar, S. Kaur, K.C. Jena, Fundamentals of ATR-FTIR spectroscopy and its role for probing in-situ molecular-level interactions. Progress Opt. Sci. Photon. 13, 37 (2021)

    Google Scholar 

  45. S.E. Glassford, B. Byrne, S.G. Kazarian, Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim. Biophys. Acta Proteins Proteom 1834, 2849–2858 (2013)

    Article  CAS  Google Scholar 

  46. L. Barbeş, C. Rădulescu, C. Stihi, ATR-FTIR spectrometry characterisation of polymeric materials. Rom. Rep. Phys. 66, 504–510 (2014)

    Google Scholar 

  47. Y. Koyama, A. Taniguchi, Studies on chitin X Homogeneous cross-linking of chitosan for enhanced cupric ion adsorption. J. Appl. Polym. Sci.Polym. Sci. 31, 1951–1954 (1986)

    Article  CAS  Google Scholar 

  48. J.Z. Knaul, S.M. Hudson, K.A.M. Creber, Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism. J Polym Sci BPolym. Sci. B 37, 1079–1094 (1999)

    Article  CAS  Google Scholar 

  49. O.A.C. Monteiro, C. Airoldi, Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 26, 119–128 (1999)

    Article  CAS  PubMed  Google Scholar 

  50. R.N.V.C. Virinthorn, M. Chandrasekaran, K. Wang, K.L. Goh, Post-process optimization of 3D printed poly(lactic-co-glycolic acid) dental implant scaffold for enhanced structure and mechanical properties: effects of sonication duration and power. J. Mater. Sci. Mater. Med. 32, 1–16 (2021)

    Article  Google Scholar 

  51. M. Ayran, A.Y. Dirican, E. Saatcioglu, S. Ulag, A. Sahin, B. Aksu, A.M. Croitoru, D. Ficai, O. Gunduz, A. Ficai, 3D-printed PCL scaffolds combined with Juglone for skin tissue engineering. Bioengineering 9, 427 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. A.C. Puigmal, M. Ayran, S. Ulag, E. Altan, M.M. Guncu, B. Aksu, B.K. Durukan, H.T. Sasmazel, R.A. Perez, E. Koc, D. O’Callaghan, O. Gunduz, Fucoidan-loaded electrospun polyvinyl-alcohol/chitosan nanofibers with enhanced antibacterial activity for skin tissue engineering. J. Mech. Behav. Biomed. Mater. 148, 106163 (2023)

    Article  CAS  PubMed  Google Scholar 

  53. A. Topsakal, S. Midha, E. Yuca, A. Tukay, H.T. Sasmazel, D.M. Kalaskar, O. Gunduz, Study on the cytocompatibility, mechanical and antimicrobial properties of 3D printed composite scaffolds based on PVA/ Gold nanoparticles (AuNP)/ Ampicillin (AMP) for bone tissue engineering. Mater. Today Commun. 28, 102458 (2021)

    Article  CAS  Google Scholar 

  54. S. Erzengin, E. Guler, E. Eser, E.B. Polat, O. Gunduz, M.E. Cam, In vitro and in vivo evaluation of 3D printed sodium alginate/polyethylene glycol scaffolds for sublingual delivery of insulin: preparation, characterization, and pharmacokinetics. Int. J. Biol. Macromol.Macromol. 204, 429–440 (2022)

    Article  CAS  Google Scholar 

  55. O. Gunduz, S. Ulag, Gentamicin and fluconazole loaded electrospun polymethylmethacrylate (PMMA) fibers as a novel platform for the treatment of corneal keratitis. Int. J. Polymer. Mater. Polymer. Biomater. 72, 995–1007 (2023)

    Article  CAS  Google Scholar 

  56. M.A. Mohamady Hussein, O. Gunduz, A. Sahin, M. Grinholc, I.M. El-Sherbiny, M. Megahed, Dual spinneret electrospun polyurethane/PVA-gelatin nanofibrous scaffolds containing cinnamon essential oil and nanoceria for chronic diabetic wound healing: preparation. Physicochem. Character. In-Vitro Eval. Mol. 2022(27), 2146 (2022)

    Google Scholar 

  57. H.Y. Cakmak, H. Ege, S. Yilmaz, G. Agturk, F.D. Yontem, G. Enguven, A. Sarmis, Z. Cakmak, O. Gunduz, Z.R. Ege, 3D printed Styrax Liquidus (Liquidambar orientalis Miller)-loaded poly (L-lactic acid)/chitosan based wound dressing material: Fabrication, characterization, and biocompatibility results. Int. J. Biol. Macromol.Macromol. 248, 125835 (2023)

    Article  CAS  Google Scholar 

  58. M.S. Izgordu, E.I. Uzgur, S. Ulag, A. Sahin, B. Karademir Yilmaz, B. Kilic, N. Ekren, F.N. Oktar, O. Gunduz, Investigation of 3D-printed polycaprolactone-/polyvinylpyrrolidone-based constructs. Cartilage 13, 626S-635S (2021)

    Article  CAS  PubMed  Google Scholar 

  59. M.A. Mohamady Hussein, J.M. Olmos, M.K. Pierański, M. Grinholc, E.M. Buhl, O. Gunduz, A.M. Youssef, C.M. Pereira, I.M. El-Sherbiny, M. Megahed, Post grafted gallic acid to chitosan-Ag hybrid nanoparticles via free radical-induced grafting reactions. Int. J. Biol. Macromol. 233, 123395 (2023)

    Article  CAS  PubMed  Google Scholar 

  60. M.F. Queiroz, K.R.T. Melo, D.A. Sabry, G.L. Sassaki, H.A.O. Rocha, Does the use of chitosan contribute to oxalate kidney stone formation? Mar. Drugs 13, 141–158 (2015)

    Article  Google Scholar 

  61. M.E. Mutlu, S. Ulag, M. Sengor, S. Daglılar, R. Narayan, O. Gunduz, Electrosprayed collagen/gentamicin nanoparticles coated microneedle patches for skin treatment. Mater. Lett. 305, 130844 (2021)

    Article  CAS  Google Scholar 

  62. S. Su, T. Bedir, C. Kalkandelen, A. Ozan Başar, H. Turkoğlu Şaşmazel, C. Bulent Ustundag, M. Sengor, O. Gunduz, Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur. Polym. J. 142, 110158 (2021)

    Article  CAS  Google Scholar 

  63. E.A. El-Hefian, M.M. Nasef, A.H. Yahaya, Preparation and characterization of chitosan/agar blended films: part 1. Chem. Struct. Morphol. J. Chem. 9, 1431–1439 (2012)

    CAS  Google Scholar 

  64. J.C. Lindon, J.K. Nicholson, J.R. Everett, NMR Spectrosc. Biofluids Annu. Rep. NMR Spectrosc. 38, 1–88 (1999)

    Article  CAS  Google Scholar 

  65. Anon, Fundamentals of protein NMR Spectroscopy. Fund. Protein NMR Spectrosc. 5, 18945–18950 (2006)

    Google Scholar 

  66. P. Hodgkinson, L. Emsley, Numerical simulation of solid-state NMR experiments. Prog. Nucl. Magn. Reson. Spectrosc.. Nucl. Magn. Reson. Spectrosc. 36, 201–239 (2000)

    Article  CAS  Google Scholar 

  67. M. Singh, A. Singh, Characterization of polymers and fibers (Elsevier, Amsterdam, 2021)

    Google Scholar 

  68. A.M. Belu, D.J. Graham, D.G. Castner, Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 24, 3635–3653 (2003)

    Article  CAS  PubMed  Google Scholar 

  69. E. Piskin, Biologically modified polymeric biomaterial surfaces: introduction. Clin. Mater.. Mater. 11, 3–7 (1992)

    Article  CAS  Google Scholar 

  70. K. Merrett, R.M. Cornelius, W.G. McClung, L.D. Unsworth, H. Sheardown, Surface analysis methods for characterizing polymeric biomaterials. J. Biomater. Sci. Polym. Ed. 13, 593–621 (2002)

    Article  CAS  PubMed  Google Scholar 

  71. H.K. Shon, M. Son, K.M. Park, C.K. Rhee, N.W. Song, H.M. Park, D.W. Moon, T.G. Lee, ToF-SIMS imaging and spectroscopic analyses of PEG-conjugated AuNPs. Surf. Interface Anal. 43, 628–631 (2011)

    Article  CAS  Google Scholar 

  72. S.K. Tam, J. Dusseault, S. Polizu, M. Ménard, J.P. Hallé, L. Yahia, Physicochemical model of alginate-poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR XPS, and ToF-SIMS. Biomaterials 26, 6950–6961 (2005)

    Article  CAS  PubMed  Google Scholar 

  73. A. Saletnik, B. Saletnik, C. Puchalski, Overview of popular techniques of raman spectroscopy and their potential in the study of plant tissues. Molecules 26, 1537 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. R.S. Das, Y.K. Agrawal, Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. Spectrosc. 57, 163–176 (2011)

    Article  CAS  Google Scholar 

  75. G. Pezzotti, Raman piezo-spectroscopic analysis of natural and synthetic biomaterials. Anal. Bioanal. Chem. 381, 577–590 (2005)

    Article  CAS  PubMed  Google Scholar 

  76. P. Rostron, S. Gaber, D. Gaber, Raman spectroscopy. Rev. Int. J. Eng. Tech. Res. 0869, 24 (2016)

    Google Scholar 

  77. Y. Alqaheem, A.A. Alomair, Microscopy and spectroscopy techniques for characterization of polymeric membranes. Membranes (Basel) 10, 22 (2020)

    Google Scholar 

  78. R. Sharma, D.P. Bisen, U. Shukla, B.G. Sharma, X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Res. Sci. Technol. 4, 77–79 (2012)

    CAS  Google Scholar 

  79. A.A. Bunaciu, Udriştioiu E gabriela and Aboul-Enein H Y X-ray diffraction: instrumentation and applications. Crit. Rev. Anal. Chem. 45, 289–299 (2015)

    Article  CAS  PubMed  Google Scholar 

  80. D.G. Lamas, N.M. de Oliveira, G. Kellermann, A.F. Craievich, X-ray diffraction and scattering by nanomaterials. Nanocharact. Tech. 45, 111–178 (2017)

    Article  Google Scholar 

  81. A. Ali, Y.W. Chiang, R.M. Santos, X-ray diffraction techniques for mineral characterization: a review for engineers of the fundamentals applications, and research directions. Minerals 12, 205 (2022)

    Article  CAS  Google Scholar 

  82. A. Chauhan, Powder XRD technique and its applications in science and technology. J. Anal. Bioanal. Tech. 5, 1–5 (2014)

    Google Scholar 

  83. E.M. Abdelrazek, A.M. Hezma, A. El-khodary, A.M. Elzayat, Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt. J. Basic Appl. Sci. 3, 10–15 (2016)

    Google Scholar 

  84. A.K. Patel, R. Bajpai, J.M. Keller, On the crystallinity of PVA/palm leaf biocomposite using DSC and XRD techniques. Microsyst. Technol. 20, 41–49 (2014)

    Article  CAS  Google Scholar 

  85. H. Liu, L. Zhang, Y. Zuo, L. Wang, D. Huang, J. Shen, P. Shi, Y. Li, Preparation and characterization of aliphatic polyurethane and hydroxyapatite composite scaffold. J. Appl. Polym. Sci.Polym. Sci. 112, 2968–2975 (2009)

    Article  CAS  Google Scholar 

  86. M.A. Nazeer, O.C. Onder, I. Sevgili, E. Yilgor, I.H. Kavakli, I. Yilgor, 3D printed poly(lactic acid) scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Mater Today Commun 25, 101515 (2020)

    Article  CAS  Google Scholar 

  87. R. Mishra, R. Varshney, N. Das, D. Sircar, P. Roy, Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur. Polym. J. 119, 155–168 (2019)

    Article  CAS  Google Scholar 

  88. M. Sinha, R.M. Banik, C. Haldar, P. Maiti, Development of ciprofloxacin hydrochloride loaded poly(ethylene glycol)/chitosan scaffold as wound dressing. J. Porous Mater. 20, 435–448 (2013)

    Article  Google Scholar 

  89. L. Liu, L. Zhang, B. Ren, F. Wang, Q. Zhang, Preparation and characterization of collagen-hydroxyapatite composite used for bone tissue engineering scaffold. Artif. Cells Blood Substit. Immobil. Biotechnol.. Cells Blood Substit. Immobil. Biotechnol. 31, 435–448 (2003)

    Article  CAS  Google Scholar 

  90. J.D. Menczel, L. Judovits, R.B. Prime, H.E. Bair, M. Reading, S. Swier, Differential scanning calorimetry (DSC). Thermal Anal. Polym. 74, 7–239 (2008)

    Google Scholar 

  91. C. Schick, Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem.Bioanal. Chem. 395(1589), 611 (2009)

    Google Scholar 

  92. B. Wunderlich, Thermal analysis of polymeric materials. Thermal Anal. Polym. Mater. 78, 1–894 (2005)

    Google Scholar 

  93. R.L. Danley, New heat flux DSC measurement technique. Thermochim. Acta 395, 201–208 (2002)

    Article  Google Scholar 

  94. P. Gill, T.T. Moghadam, B. Ranjbar, Differential scanning calorimetry techniques: applications in biology and nanoscience. J. Biomol. Tech.Biomol. Tech. 21, 167 (2010)

    Google Scholar 

  95. E. Guler, A. Nur Hazar-Yavuz, E. Tatar, M. Morid Haidari, G. Sinemcan Ozcan, G. Duruksu, M.P.F. Graça, D.M. Kalaskar, O. Gunduz, M. Emin Cam, Oral empagliflozin-loaded tri-layer core-sheath fibers fabricated using tri-axial electrospinning: enhanced in vitro and in vivo antidiabetic performance. Int. J. Pharm. 635, 122716 (2023)

    Article  CAS  PubMed  Google Scholar 

  96. J. Jin, F. Lin, R. Liu, T. Xiao, J. Zheng, G. Qian, H. Liu, P. Wen, Preparation and thermal properties of mineral-supported polyethylene glycol as form-stable composite phase change materials (CPCMs) used in asphalt pavements. Sci. Rep. 7, 16998 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  97. M. Ishaq, K. Saeed, M. Shakirullah, I. Ahmad, T. Rehman, Effect of coal ash on the morphological, thermal and mechanical properties of poly(Methyl methacrylate). J. Chil. Chem. Soc.Chil. Chem. Soc. 57, 992–994 (2012)

    Article  CAS  Google Scholar 

  98. A.M. Youssef, F.M. Malhat, H.A.A. Abdel, I. Dekany, Synthesis and utilization of poly (methylmethacrylate) nanocomposites based on modified montmorillonite. Arab. J. Chem. 10, 631–642 (2017)

    Article  CAS  Google Scholar 

  99. M.S. Izgordu, M. Ayran, S. Ulag, R. Yildirim, B. Bulut, A. Sahin, M.M. Guncu, B. Aksu, O. Gunduz, Fabrication of gentamicin sulfate-loaded 3D-printed polyvinyl alcohol/sodium alginate/gelatin-methacryloyl hybrid scaffolds for skin tissue replacement. Macromol. Mater. Eng.. Mater. Eng. 308, 2300151 (2023)

    Article  CAS  Google Scholar 

  100. E. Ilhan, S. Cesur, E. Guler, F. Topal, D. Albayrak, M.M. Guncu, M.E. Cam, T. Taskin, H.T. Sasmazel, B. Aksu, F.N. Oktar, O. Gunduz, Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material. Int. J. Biol. Macromol.Macromol. 161, 1040–1054 (2020)

    Article  CAS  Google Scholar 

  101. D.P. Perkasa, E. Erizal, D. Darmawan, A. Rasyid, Effect of gamma irradiation on mechanical and thermal properties of fish gelatin film isolated from Lates calcarifer scales. Indones. J. Chem. 13, 28–35 (2013)

    Article  CAS  Google Scholar 

  102. A.K. Singh, Experimental methodologies for the characterization of nanoparticles BT—engineered nanoparticles. Eng. Nanoparticles 15, 42–70 (2016)

    Google Scholar 

  103. T.A. Silva, J.S. Stefano, B.C. Janegitz, Sensing materials: nanomaterials encyclopedia of sensors and biosensors. Biosensors 1–4(15), 33 (2022)

    Google Scholar 

  104. N. Rodrigues, M. Benning, A.M. Ferreira, L. Dixon, K. Dalgarno, Manufacture and characterisation of porous PLA scaffolds. Procedia CIRP 49, 33–38 (2016)

    Article  Google Scholar 

  105. M.A. Mohamady Hussein, O. Gunduz, A. Sahin, M. Grinholc, I.M. El-Sherbiny, M. Megahed, Dual spinneret electrospun polyurethane/PVA-gelatin nanofibrous scaffolds containing cinnamon essential oil and nanoceria for chronic diabetic wound healing: preparation physicochemical characterization and in-vitro evaluation. Molecules 27, 2146 (2022)

    Article  Google Scholar 

  106. V.A. Reyna-Urrutia, V. Mata-Haro, J.V. Cauich-Rodriguez, W.A. Herrera-Kao, J.M. Cervantes-Uc, Effect of two crosslinking methods on the physicochemical and biological properties of the collagen-chitosan scaffolds. Eur. Polym. J. 117, 424–433 (2019)

    Article  CAS  Google Scholar 

  107. M. MashhadiKeshtiban, H. Taghvaei, R. Noroozi, V. Eskandari, Z.U. Arif, M. Bodaghi, H. Bardania, A. Hadi, Biological and mechanical response of graphene oxide surface-treated polylactic acid 3D-printed bone scaffolds: experimental and numerical approaches. Adv. Eng. Mater. 26, 2301260 (2024)

    Article  CAS  Google Scholar 

  108. E. Ilhan, S. Cesur, E. Guler, F. Topal, D. Albayrak, M.M. Guncu, M.E. Cam, T. Taskin, H.T. Sasmazel, B. Aksu, F.N. Oktar, O. Gunduz, Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material. Int. J. Biol. Macromol.Macromol. 161(1040), 1054 (2020)

    Google Scholar 

  109. E.B. Gurler, N.M. Ergul, B. Ozbek, N. Ekren, F.N. Oktar, M.E. Haskoylu, E.T. Oner, M.S. Eroglu, D. Ozbeyli, V. Korkut, A.F. Temiz, N. Kocanalı, R.J. Gungordu, D.B. Kılıckan, O. Gunduz, Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material. Mater. Sci. Eng. C 100, 125835 (2019)

    Article  Google Scholar 

  110. E. Saatcioglu, M. Koyun, S. Ulag, A. Sahin, B.K. Yilmaz, B. Aksu, O. Gunduz, 3D printing of osage orange extract/chitosan scaffolds for soft tissue engineering. Food Hydrocoll. Health 1, 995–1007 (2021)

    Google Scholar 

  111. O. Gunduz, S. Ulag, Gentamicin and fluconazole loaded electrospun polymethylmethacrylate (PMMA) fibers as a novel platform for the treatment of corneal keratitis. Int. J. Polym. Mater. Polym. Biomater.Polym. Mater. Polym. Biomater. 72, 995–1007 (2023)

    Article  CAS  Google Scholar 

  112. S.H. Oh, I.K. Park, J.M. Kim, J.H. Lee, In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28, 1664–1671 (2007)

    Article  CAS  PubMed  Google Scholar 

  113. I.V. Yannas, E. Lee, D.P. Orgill, E.M. Skrabut, G.F. Murphy, Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. U.S.A. 86, 933–937 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. A.K. Salem, R. Stevens, R.G. Pearson, M.C. Davies, S.J.B. Tendler, C.J. Roberts, P.M. Williams, K.M. Shakesheff, Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J. Biomed. Mater. Res. 61, 212–217 (2002)

    Article  CAS  PubMed  Google Scholar 

  115. D.W. Hutmacher, J.T. Schantz, C.X.F. Lam, K.C. Tan, T.C. Lim, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1, 245–260 (2007)

    Article  CAS  PubMed  Google Scholar 

  116. F. Dehghani, N. Annabi, Engineering porous scaffolds using gas-based techniques. Curr. Opin. Biotechnol. 22, 661–666 (2011)

    Article  CAS  PubMed  Google Scholar 

  117. D. Alsteens, H.E. Gaub, R. Newton, M. Pfreundschuh, C. Gerber, D.J. Müller, Atomic force microscopy-based characterization and design of biointerfaces. Nat. Rev. Mater. 2, 1–16 (2017)

    Article  Google Scholar 

  118. S.V. Kontomaris, A. Stylianou, Atomic force microscopy for university students: applications in biomaterials. Eur. J. Phys. 38, 033003 (2017)

    Article  Google Scholar 

  119. D.P. Allison, N.P. Mortensen, C.J. Sullivan, M.J. Doktycz, Atomic force microscopy of biological samples. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 618–634 (2010)

    Article  PubMed  Google Scholar 

  120. Y.Z. Zhang, Y. Feng, Z.M. Huang, S. Ramakrishna, C.T. Lim, Fabrication of porous electrospun nanofibres. Nanotechnology 17, 352–354 (2006)

    Article  Google Scholar 

  121. C. Galo, P. Anaya, R. Del Rio, R. Schrebler, C. Von Plessing, M. Schneider, Scanning electron microscopy and atomic force microscopy of chitosan composite films. J. Chil. Chem. Soc. 55, 352–354 (2010)

    Article  Google Scholar 

  122. C.S. Stan, M. Popa, M. Olariu, M.S. Secula, Synthesis and characterization of PSSA-Polyaniline composite with an enhanced processability in thin films. Open Chem.Chem 13, 78 (2015)

    Google Scholar 

  123. A. Gambardella, M. Bianchi, S. Kaciulis, A. Mezzi, M. Brucale, M. Cavallini, T. Herrmannsdoerfer, G. Chanda, M. Uhlarz, A. Cellini, M.F. Pedna, V. Sambri, M. Marcacci, A. Russo, Magnetic hydroxyapatite coatings as a new tool in medicine: a scanning probe investigation. Mater. Sci. Eng. C 62, 444–449 (2016)

    Article  CAS  Google Scholar 

  124. M. Marrese, V. Guarino, L. Ambrosio, Atomic force microscopy: a powerful tool to address scaffold design in tissue engineering. J. Funct. Biomater. 8, 7 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  125. R.T. Dombrowski, Microscopy techniques for analyzing the phase nature and morphology of biomaterials. Charact. Biomater. 15, 1–33 (2012)

    Google Scholar 

  126. M. Kannan, Transmission electron microscope-principle components and applications. Textbook Fund. Appl. Nanotechnol. 4, 93–102 (2018)

    Google Scholar 

  127. S. Gangadoo, A. Taylor-Robinson, J. Chapman, Nanoparticle and biomaterial characterisation techniques. Mater. Technol. 30, B44–B56 (2015)

    Article  CAS  Google Scholar 

  128. G. Liao, S. Jiang, X. Xu, Y. Ke, Electrospun aligned PLLA/PCL/HA composite fibrous membranes and their in vitro degradation behaviors. Mater. Lett. 82, 159–162 (2012)

    Article  CAS  Google Scholar 

  129. G. Ozkoc, S. Kemaloglu, Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. J. Appl. Polym. Sci.Polym. Sci. 114, 2481–2487 (2009)

    Article  CAS  Google Scholar 

  130. N. Olson, Current trends in analytical spectroscopy: Technique and instrument modifications for both new and improved measurements. Spectroscopy (Santa Monica) 33, 34–39 (2018)

    CAS  Google Scholar 

  131. N. Kumar, M.M. Drozdz, H. Jiang, D.M. Santos, D.J. Vaux, Nanoscale mapping of newly-synthesised phospholipid molecules in a biological cell using tip-enhanced Raman spectroscopy. Chem. Commun. 53, 2451–2454 (2017)

    Article  CAS  Google Scholar 

  132. S.A. Iakab, P. Ràfols, X. Correig-Blanchar, M. García-Altares, Perspective on multimodal imaging techniques coupling mass spectrometry and vibrational spectroscopy: picturing the best of both worlds. Anal. Chem. 93, 6301–6310 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. F. Simone Ruggeri, J. Habchi, A. Cerreta, G. Dietler, AFM-based single molecule techniques: unraveling the amyloid pathogenic species. Curr. Pharm. Des.. Pharm. Des. 22, 3950–3970 (2016)

    Article  Google Scholar 

  134. J. Workman, H. Mark, Artificial intelligence in analytical spectroscopy part ii: examples in spectroscopy. Spectrosc. (Santa Monica) 38, 10–15 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oguzhan Gunduz or Canan Dogan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayadurmus, H.M., Ayran, M., Goktug, S. et al. Spectroscopic Characterization of Biomaterials for Tissue Engineering Applications. Biomedical Materials & Devices (2024). https://doi.org/10.1007/s44174-024-00177-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-024-00177-1

Keywords

Navigation