Skip to main content

Advertisement

Log in

Ab-initio, Molecular Docking and MD Simulation of an Anti-HIV Drug (Lamivudine): An In-silico Approach

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Lamivudine (3TC), a nucleoside analogue reverse transcriptase inhibitor (NARTI) that is being widely used to treat HIV infection, has been chosen in this study to investigate its electronic properties, non-linear optical properties (NLO) and absorption spectra along with its inhibition activity with deoxycytidine kinase receptor (PDB ID: 2NOA). For DFT calculations, B3LYP and ωB97XD functionals with 6–311 + G(d,p) basis set have been employed in gas, water and methanol mediums. In molecular docking, it is observed that the binding energies of the 2NOA receptor with lamivudine allow a variety of binding sites, however, the most preferred binding site, has been taken into account for molecular dynamics (MD) simulation. The molecular docking and molecular dynamics simulation results elucidate that lamivudine exhibits better binding and stability with 2NOA protein receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data will be available/provided on a reasonable request.

References

  1. L. Linley, A. S. Johnson, R. Song, S. Hu, B. Wu, H. I. Hall, Z. Gant, S. Johnson, K. Hess, W. Adih, A. Hernandez, M. Morgan, HIV Surveillance Supplemental Report, 24, (2019). http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html

  2. L. Cisneros, Thirty Years of AIDS: A Timeline of the Epidemic | UC San Francisco (2011). https://www.ucsf.edu/news/2011/06/104134/thirty-years-aids-timeline-epidemic

  3. V. Srivastava, S. P. Agarwal, K. S. J. Singh, N. Trivedi, A. Dubey, Virol. Immunol. J. 4, 000261 (2020). https://doi.org/10.23880/vij-16000261

  4. K. Sahin, J. Biomol. Struct. Dyn. 39, 3638–3648 (2020). https://doi.org/10.1080/07391102.2020.1775121

    Article  CAS  Google Scholar 

  5. S.-Y. Rhee, K. Sankaran, V. Varghese, M.A. Winters, C.B. Hurt, J.J. Eron, N. Parkin, S.P. Holmes, M. Holodniy, R.W. Shafer, J. Virol. 90, 6058–6070 (2016)

    Article  CAS  Google Scholar 

  6. I.T. Weber, Y.F. Wang, R.W. Harrison, Viruses 13, 839 (2021)

    Article  CAS  Google Scholar 

  7. N.V. Bhagavan, C.-E. Ha, Chapter 22 - DNA Replication, Repair, and Mutagenesis, ed. by N.V. Bhagavan, C.-E. Ha, Essentials of Medical Biochemistry (Academic Press, 2011), pp. 287–299

  8. M.J. Pucci, C. Callebaut, A. Cathcart, K. Bush, 5.17 - Recent Epidemiological Changes in Infectious Diseases, ed. by S. Chackalamannil, D. Rotella, S.E. Ward, Comprehensive Medicinal Chemistry III (Elsevier, 2017), pp. 511–552

    Google Scholar 

  9. E. Sokal, Expert Opinion on Pharmacotherapy. 3, 329–339 (2005). https://doi.org/10.1517/14656566.3.3.329

    Article  Google Scholar 

  10. B. Jarvis, D. Faulds, Drugs 58, 101–141 (1999)

    Article  CAS  Google Scholar 

  11. S. Di Giambenedetto, M. Fabbiani et al., J. Antimicrob. Chemother. 72, 1163–1171 (2017)

    Google Scholar 

  12. S. Di Giambenedetto, M. Fabbiani, M. Colafigli, N. Ciccarelli, S. Farina, L. Sidella, A. D’Avino, A. Mondi, A. Cingolani, E. Tamburrini, R. Murri, P. Navarra, R. Cauda, A. De Luca, J. Antimicrob. Chemother. 68, 1364–1372 (2013)

    Article  Google Scholar 

  13. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.

  15. R. Dennington, T.A. Keith, and J.M. Millam, GaussView, Version 6.1, Semichem Inc., Shawnee Mission, KS, 2016.

  16. V. Tsirelson, Y. Ivanov, E. Zhurova, V. Zhurov, K. Tanaka, Acta Cryst. B56, 197–203 (2000). https://doi.org/10.1107/S0108768199015529

  17. J.B. Foresman, Æ. Frisch, Exploring chemistry with electronic structure methods (Gaussian Inc, Pittsburgh, PA, 1996)

    Google Scholar 

  18. L. Pauling, The nature of chemical bond, 3rd edn. (Cornell University Press, Ithaca, New York, 1960)

    Google Scholar 

  19. P. Senet, Chem. Phys. Lett. 275, 527–532 (1997)

    Article  CAS  Google Scholar 

  20. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 3801–3807 (1977)

    Article  Google Scholar 

  21. R.G. Parr, L.V. Szentpály, S. Liu, J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  CAS  Google Scholar 

  22. Y. Liu, M. Grimm, W. Tao Dai, M. Chun Hou, Z.X. Xiao, Y. Cao, Acta Pharmacol. Sin. 41, 138–144 (2020)

    Google Scholar 

  23. J.C. Phillips, D.J. Hardy, J.D.C. Maia, J.E. Stone, J.V. Ribeiro, R.C. Bernardi, R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M.C.R. Melo, B.K. Radak, R.D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L.V. Kalé, K. Schulten, C. Chipot, E. Tajkhorshid, J. Chem. Phys. 153, 044130 (2020)

    Article  CAS  Google Scholar 

  24. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell, J. Comput. Chem. 31, 671–690 (2010)

    Article  CAS  Google Scholar 

  25. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  26. E. Wang, W. Fu, D. Jiang, H. Sun, J. Wang, X. Zhang, G. Weng, H. Liu, P. Tao, T. Hou, J. Chem. Inf. Model. 61, 2844–2856 (2021)

    Article  CAS  Google Scholar 

  27. H. Hadki, H. El Hadki, A. El Hadki, R. Tazi, N. Komiha, A. Zrineh, S. El Hajjaji, O. Kabbaj, Moroc. J. Chem. 9, 198–209 (2021)

    Google Scholar 

  28. G.R. Ramkumaar, S. Srinivasan, T.J. Bhoopathy, S. Gunasekaran, Spectrochim. Acta A 98, 265–270 (2012)

    Article  CAS  Google Scholar 

  29. D. Sharma, S.N. Tiwari, Emerg. Mater. Res. 6, 322–330 (2017)

    Google Scholar 

  30. D. Sharma, G. Tiwari, S.N. Tiwari, Int. J. Electroact. Mater. 5, 19–30 (2017)

    Google Scholar 

  31. G. Tiwari, D. Sharma, Mater. Today Proc. 29, 844–849 (2019)

    Article  Google Scholar 

  32. A. Tiwari, J. Palepu, A. Choudhury, S. Bhattacharya, S. Kanungo, FlatChem. 34, 100392 (2022)

    Article  CAS  Google Scholar 

  33. M. Akif Haque, M.V. Kuchukuntla, Der Pharma. Chem. 10, 108–111 (2018)

    Google Scholar 

  34. S. Astuti, Y. Yulizar, A. Saefumillah, D.O.B. Apriandanu, A.I.P. Conf, Proc. 2242, 040029 (2020)

    CAS  Google Scholar 

  35. G. Deepali, M. Elvis, J. Young Pharm. 2, 417–419 (2010)

    Article  CAS  Google Scholar 

  36. A.M. Kumar, B.N. Sandhya, M. Nasare, V.V.L.N. Prasad, P.V. Diwan. J. Adv. Pharm. Edu. Res. 4, 210–214 (2012)

  37. R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, J. Appl. Crystallogr. 26, 283 (1993)

    Article  CAS  Google Scholar 

  38. G. Tiwari, A. Kumar, K.K. Dwivedi, D. Sharma, Polycycl. Aromat. Compd. 42, 2789–2804 (2022)

    Article  CAS  Google Scholar 

  39. G. Tiwari, M.S. Chauhan, D. Sharma, Polycycl. Aromat. Compd. 42, 7256–7266 (2022)

    Article  CAS  Google Scholar 

  40. G. Tiwari, M.S. Chauhan, D. Sharma, Polycycl. Aromat. Compd. 43, 4654–4669 (2023)

    Article  CAS  Google Scholar 

  41. E. Sabini, S. Hazra, M. Konrad, S.K. Burley, A. Lavie, Nucleic Acids Res. 35, 186–192 (2007)

    Article  CAS  Google Scholar 

  42. A.A. Korlyukov, A.I. Stash, A.R. Romanenko et al., Biomedicines, 11, 743 (2023). https://doi.org/10.3390/biomedicines11030743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For his informative remarks and helpful conversation, we are grateful to Prof. S N Tiwari of the Department of Physics, D.D.U. Gorakhpur University, Gorakhpur. D. Sharma is appreciative of the financial assistance provided by UGC, New Delhi, India, in the form of the Start-Up Project [F.30-505/2020(BSR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipendra Sharma.

Ethics declarations

Conflict of Interest

The authors declare no financial interests that are directly or indirectly related to the work submitted for publication. There are no competing interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, G., Kumar, S., Chauhan, M.S. et al. Ab-initio, Molecular Docking and MD Simulation of an Anti-HIV Drug (Lamivudine): An In-silico Approach. Biomedical Materials & Devices (2023). https://doi.org/10.1007/s44174-023-00131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-023-00131-7

Keywords

Navigation