Skip to main content

Advertisement

Log in

Crosslinking Methods in Polysaccharide-Based Hydrogels for Drug Delivery Systems

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Polysaccharides are inspiring and valuable molecules to the development of novel drug delivery systems owing to their natural availability, non-toxicity, biocompatibility, good biological performance, and chemical similarity to the physiological environment, besides their noticeable use for tailored-materials assembly. Biodegradable hydrogels based on polysaccharides have been widely studied as potential pharmaceutical forms due to their controlled release properties, which improve drug bioavailability, therapeutic efficacy, and patient compliance. Despite these advantages, polysaccharide materials present insufficient mechanical properties or processability, thus, to overcome these drawbacks, feasible and suitable crosslinking methods are employed to improve polysaccharide hydrogels strength and stability. Therefore, this review presents recent advances in crosslinking methods of polysaccharide hydrogels, including chitosan, cellulose, hyaluronic acid, and alginate, providing examples of manufacturing processes with emphasis in their use as carriers in drug delivery. Polysaccharide-based hydrogels represent a sustainable, biocompatible, and appreciable alternative to obtain novel drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Alvarez-Lorenzo, A. Concheiro, Smart drug delivery systems: from fundamentals to the clinic. RSC 50, 7743–7765 (2014)

    CAS  Google Scholar 

  2. D.E. Ciolacu, R. Nicu, F. Ciolacu, Cellulose-based hydrogels as sustained drug-delivery systems. Materials 13, 5270 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. H. Wu, J. Nan, L. Yang, H.J. Park, J. Li, Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. J. Control. Release 353, 51–62 (2023)

    Article  CAS  PubMed  Google Scholar 

  4. S. Simões, A. Figueiras, F. Veiga, Modular hydrogels for drug delivery. J. Biomater. Nanobiotechnol. 3, 85–199 (2012)

    Article  Google Scholar 

  5. B. Tian, J. Liu, Smart stimuli-responsive chitosan hydrogel for drug delivery: a review. Int. J. Biol. Macromol. 235, 123902–123902 (2023)

    Article  CAS  PubMed  Google Scholar 

  6. S. Uman, A. Dhand, J.A. Burdick, Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J. Appl. Polym. Sci. 137, 48668 (2019)

    Article  Google Scholar 

  7. D. Das, H.T.T. Pham, S. Lee, I. Noh, Fabrication of alginate-based stimuli-responsive, non-cytotoxic, terpolymers semi-IPN hydrogel as a carrier for controlled release of bovine albumin serum and 5-amino salicylic acid. Mater. Sci. Eng. C. 98, 42–53 (2019)

    Article  CAS  Google Scholar 

  8. S.M.-J. Kabir, P.P. Sikdar, B. Haque, M.A.R. Bhuiyan, A. Ali, M.N. Islam, Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater. 7, 153–174 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Al-Muhanna, N. Anwar, Md.S. Hasmin, A.K. Nayak, Synthesis of tailor-made polysaccharides: an overview, in Tailor-Made Polysaccharides in Drug Delivery. ed. by A. Nayak, Md.S. Hasnain (Academic Press, Cambridge, 2022), pp.1–20

    Google Scholar 

  10. S. Yang, F. Wang, H. Han, H.A. Santos, Y. Zhang, H. Zhang, J. Wei, Z. Cai, Fabricated technology of biomedical micro-nano hydrogel. Biomed. Technol. 2, 31–48 (2023)

    Article  CAS  Google Scholar 

  11. S. Adepu, S. Ramakrishna, Controlled drug delivery systems: current status and future directions. Molecules 26, 5905 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Dattilo, F. Patitucci, S. Prete, O.I. Parisi, F. Puoci, Polysaccharide-based hydrogels and their application as drug delivery systems in cancer treatment: a review. J. Funct. Biomater. 14, 55 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y.K. Sung, S.W. Kim, Recent advances in polymeric drug delivery systems. Biomater Res. 24, 150–161 (2020)

    Article  Google Scholar 

  14. N.N. Ferreira, L.M.B. Ferreira, V.M.O. Cardoso, F.I. Boni, A.L.R. Souza, M.P.D. Gremião, Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur. Polym. J. 99, 117–133 (2018)

    Article  CAS  Google Scholar 

  15. Q. Chen, Y. He, Q. Li, K. Yang, L. Sun, H. Xu, R. Wang, Intelligent design and medical applications of antimicrobial hydrogels. Colloids Interface Sci. Commun. 53, 100696 (2023)

    Article  CAS  Google Scholar 

  16. E. Hasanzadeh, A. Seifalian, A. Mellati, J. Saremi, S. Asadpour, S.E. Enderami, H. Nekounam, N. Mahmoodi, Injectable hydrogels in central nervous system: unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Mater. Today. Biol. 20, 100614 (2023)

    Article  CAS  Google Scholar 

  17. Y. Xiao, Y. Gu, L. Qin, L. Chen, X. Chen, W. Cui, F. Li, N. Xiang, X. He, Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf. B. 200, 111581 (2021)

    Article  CAS  Google Scholar 

  18. J. Mantovan, J.F. Pereira, B.M. Marim, V.G. Resta, G.A. Gil-Giraldo, S. Mali, Nanocellulose hydrogels, in Industrial Applications of Nanocellulose and Its Nanocomposite, vol. 1, ed. by S.M. Sapuan, M.N.F. Norrrahim, R.A. Ilyas (Elsevier, Kidlington, 2022), pp.1–524

    Google Scholar 

  19. M. Zhang, Z. Fan, J. Zhang, Y. Yang, C. Huang, X. Zhang, D. Ding, G. Liu, N. Cheng, Multifunctional chitosan/alginate hydrogel incorporated with bioactive glass nanocomposites enabling photothermal and nitric oxide release activities for bacteria-infected wound healing. Int. J. Biol. Macromol. 232, 123445–123445 (2023)

    Article  CAS  PubMed  Google Scholar 

  20. L. Deng, B. Wang, W. Li, Z. Han, S. Chen, H. Wang, Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing. Int. J. Biol. Macromol. 217, 77–87 (2022)

    Article  CAS  PubMed  Google Scholar 

  21. L.C. Wong, J.H. Poh, W.T. Tan, B.-K. Khor, V. Murugaiyah, C.P. Leh, C.F. Goh, Cellulose hydrogel development from unbleached oil palm biomass pulps for dermal drug delivery. Int. J. Biol. Macromol. 224, 483–495 (2023)

    Article  CAS  PubMed  Google Scholar 

  22. J. Radwan-Pragłowska, L. Janus, M. Piątkowski, A. Sierakowska, D. Matysek, ZnO nanorods functionalized with chitosan hydrogels crosslinked with azelaic acid for transdermal drug delivery. Colloids Surf. B. 194, 111170 (2020)

    Article  Google Scholar 

  23. H. Wei, S. Liu, Z. Tong, T. Chen, M. Yang, Y. Guo, H. Sun, Y. Wu, Y. Chu, L. Fan, Hydrogel-based microneedles of chitosan derivatives for drug delivery. React. Funct. Polym. 172, 105200 (2020)

    Article  Google Scholar 

  24. M.R. El-Aassar, O.M. Ibrahim, M.M.G. Fouda, N.G. El-Beheri, M.M. Agwa, Wound healing of nanofiber comprising polygalacturonic/hyaluronic acid embedded silver nanoparticles: in-vitro and in-vivo studies. Carbohydr. Polym. 238, 116175 (2018)

    Article  Google Scholar 

  25. J. Li, H. Wu, K. Jiang, Y. Liu, L. Yang, H.J. Park, Alginate calcium microbeads containing chitosan nanoparticles for controlled insulin release. Appl. Biochem. Biotechnol. 193, 463–478 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. R. Rakhshaei, H. Namazi, H. Hamishehkar, M. Rahimi, Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. Int. J. Biol. Macromol. 150, 1121–1129 (2023)

    Article  Google Scholar 

  27. G. Kaufmann, M.P. Klein, M.I. Goettert, T.A.S. Aguirre, Development and cytotoxicity evaluation of a cylindrical pH-responsive chitosan-genipin hydrogel for the oral delivery of diclofenac sodium. Eur. Polym. J. 181, 111649 (2022)

    Article  CAS  Google Scholar 

  28. S. Saifullah, T. Kanwal, S. Ullah, M. Kawish, S.M. Habib, I. Ali, A. Munir, M. Imran, M.R. Shah, Design and development of lipid modified chitosan containing mucoadhesive self-emulsifying drug delivery systems for cefixime oral delivery. Chem. Phys. Lipids. 235, 105052 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. M. Pereira, F.C. Silva, S. Simões, H.M. Ribeiro, A.J. Almeida, J. Marto, Innovative, sugar-free oral hydrogel as a co-administrative vehicle for pediatrics: a strategy to enhance patient compliance. AAPS PharmSciTech 23, 107 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. Y.H. Lee, B.-W. Lee, Y.C. Jung, B.-I. Yoon, H.-M. Woo, B.-J. Kang, Application of alginate microbeads as a carrier of bone morphogenetic protein-2 for bone regeneration. J. Biomed. Mater. Res. 107, 286–294 (2018)

    Article  Google Scholar 

  31. G. Shi, Y. Zhou, W. Liu, C. Chen, Y. Wei, X. Yan, L. Wu, W. Wang, L. Sun, T. Zhang, Bone-derived MSCs encapsulated in alginate hydrogel prevent collagen-induced arthritis in mice through the activation of adenosine A2A/2B receptors in tolerogenic dendritic cells. Acta Pharmacol. Sin. B. 13, 2778–2794 (2023)

    Article  CAS  Google Scholar 

  32. Y. Zhou, Z. Zhai, Y. Yao, J.C. Stant, S.L. Landrum, M.J. Bortner, C.E. Frazier, K.J. Edgar, Oxidized hydroxypropyl cellulose/carboxymethyl chitosan hydrogels permit pH-responsive, targeted drug release. Carbohydr. Polym. 300, 120213 (2023)

    Article  CAS  PubMed  Google Scholar 

  33. J. Huang, Y. Deng, J. Ren, G. Chen, G. Wang, F. Wang, X. Wu, Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohydr. Polym. 186, 54–63 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. T. Shi, D. Niu, J. You, S. Li, G. Li, K. Ren, S. Yan, G. Xu, J. Yin, Injectable macro-porous chitosan/polyethylene glycol-silicotungstic acid double-network hydrogels based on “smashed gels recombination” strategy for cartilage tissue engineering. Int. J. Biol. Macromol. 233, 123541 (2023)

    Article  CAS  PubMed  Google Scholar 

  35. N.-G. Kim, P. Chandika, S.-C. Kim, D.-H. Won, W.S. Park, I.-W. Choi, S.G. Lee, Y.-M. Kim, W.-K. Jung, Fabrication and characterization of ferric ion cross-linked hyaluronic acid/pectin-based injectable hydrogel with antibacterial ability. Polumey. 271, 125808 (2023)

    Article  CAS  Google Scholar 

  36. Z. Karim, P. Karwa, S.R.R. HireMath, Polymeric microneedles for transdermal drug delivery—a review of recent studies. J. Drug. Deliv. Sci. Technol. 77, 103760 (2022)

    Article  CAS  Google Scholar 

  37. R. Maji, C.A. Omolo, Y. Jaglal, S. Singh, N. Devnarain, C. Mocktar, T. Govender, A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int. J. Pharm. 607, 120990–120990 (2021)

    Article  CAS  PubMed  Google Scholar 

  38. D. Mazhar, N.U. Haq, M. Zeeshan, Q.U. Ain, H. Ali, S. Khan, S.A. Khan, Preparation, characterization, and pharmacokinetic assessment of metformin HCl loaded transfersomes co-equipped with permeation enhancer to improve drug bioavailability via transdermal route. J. Drug. Deliv. Sci. Technol. 84, 104448 (2023)

    Article  CAS  Google Scholar 

  39. J. Yekrang, N.G. Shahbazi, F. Rostami, M. Ramyar, Electrospun chitosan/polyvinyl alcohol nanofiber patches loaded with vitamin B12. Int. J. Biol. Macromol. 230, 123187–123187 (2023)

    Article  CAS  PubMed  Google Scholar 

  40. H. Wang, H. Zhang, Z. Xie, K. Chen, M. Ma, Y. Huang, M. Li, Z. Cai, P. Wang, H. Shen, Injectable hydrogels for spinal cord injury repair. Eng. Regen. 3, 407–419 (2022)

    Google Scholar 

  41. G.K. Wasupalli, D. Verma, Thermosensitive injectable hydrogel based on chitosan-polygalacturonic acid polyelectrolyte complexes for bone tissue engineering. Carbohydr. Polym. 294, 119769 (2022)

    Article  CAS  PubMed  Google Scholar 

  42. F. Scheffold, Pathways and challenges towards a complete haracterization of microgels. Nat. Commun. 11, 4315–4315 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. J. Pushpamalar, P. Meganathan, H.L. Tan, N.A. Dahlan, L.T. Ooi, B.N.H.M. Neerooa, R.Z. Essa, K. Shameli, S.Y. Teow, Development of a polysaccharide-based hydrogel drug delivery system (DDS): an update. Gels. 7, 153 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. K. Ganguly, K. Chaturvedi, U.A. More, M.N. Nadagouda, T.M. Aminabhavi, Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J. Control. Release 193, 162–173 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. E. Madivoli, Polysaccharide based hydrogels in drug delivery systems, wound healing, and agriculture. Chem. Afr. (2023)

  46. A.C. Alavarse, E.C.G. Frachini, R.L.C.G. Silva, V.H. Lima, A. Shavandi, D.F. Crosslinkers for polysaccharides and proteins: synthesis conditions, mechanisms, and crosslinking efficiency: a review. Int. J. Biol. Macromol. 202, 558–596 (2022)

  47. J. Pushpamalar, A.K. Veeramachineni, C. Owh, X.J. Loh, Biodegradable polysaccharides for controlled drug delivery. Chem. Plus. Chem. 81, 504–514 (2016)

    CAS  PubMed  Google Scholar 

  48. H. López-Hortas, H. Domínguez, M.D. Torres, Valorisation of edible brown seaweeds by the recovery of bioactive compounds from aqueous phase using MHG to develop innovative hydrogels. Process. Biochem. 78, 100–107 (2019)

    Article  Google Scholar 

  49. J. Tan, Y. Luo, Y. Guo, Y. Zhou, X. Liao, D. Li, X. Lai, Y. Liu, Development of alginate-based hydrogels: crosslinking strategies and biomedical applications. Int. J. Biol. Macromol. 239, 124275–124275 (2023)

    Article  CAS  PubMed  Google Scholar 

  50. J. Supramaniam, R. Adnan, N.H.M. Kaus, R. Bushra, Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int. J. Biol. Macromol. 118, 640–648 (2018)

    Article  CAS  PubMed  Google Scholar 

  51. H. Ma, J. Zhao, Y. Liu, L. Liu, J. Yu, Y. Fan, Controlled delivery of aspirin from nano cellulose-sodium alginate interpenetrating network hydrogels. Ind. Crops. Prod. 192, 116081 (2023)

    Article  CAS  Google Scholar 

  52. C. Wu, Y. Zhang, Y. Xu, L. Long, X. Hu, J. Zhang, Y. Wang, Injectable polyaniline nanorods/alginate hydrogel with AAV9-mediated VEGF overexpression for myocardial infarction treatment. Biomaterials 296, 122088–122088 (2023)

    Article  CAS  PubMed  Google Scholar 

  53. N.D. Rusli, A.A.A. Ghani, K. Mat, M.T. Yusof, M. Zamri-Saad, H.A. Hassim, The potential of pretreated oil palm frond in enhancing rumen degradability and growth performance: a review. Adv. Anim. Vet. Sci. 9, 881–822 (2021)

    Google Scholar 

  54. J.K. Saini, H. Hemansi, A. Kaur, A. Mathur, Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: a review. Bioresour. Technol. 360(2022), 127517–127517 (2022)

    Article  CAS  Google Scholar 

  55. A.P.C. Almeida, J.N. Saraiva, G. Cavaco, R.P. Portela, C.R. Leal, R.G. Sobral, P.L. Almeida, Crosslinked bacterial cellulose hydrogels for biomedical applications. Eur. Polym. J. 177, 111438 (2023)

    Article  Google Scholar 

  56. E.M. Zyl, M.A. Kennedy, W. Nason, S.J. Fenlon, E.M. Young, L.J. Smith, S.R. Bhatia, J.M. Coburn, Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii using arabitol. Biomater. Adv. 148, 213345 (2023)

    Article  PubMed  Google Scholar 

  57. R. Freixo, F. Casanova, A.B. Ribeiro, C.F. Pereira, E.M. Costa, M.E. Pintado, Ó.L. Ramos, Extraction methods and characterization of cellulose fractions from a sugarcane by-product for potential industry applications. Ind. Crops. Prod. 197, 116615 (2023)

    Article  CAS  Google Scholar 

  58. J.F. Pereira, B.M. Marim, S. Mali, Chemical modification of cellulose using a green route by reactive extrusion with citric and succinic acids. Polysaccharides. 3, 292–305 (2022)

    Article  CAS  Google Scholar 

  59. T.A. Debele, S.L. Mekuria, H.-C. Tsai, Polysaccharide based nanogels in the drug delivery system: application as the carrier of pharmaceutical agents. Mater. Sci. Eng. C. 68, 964–981 (2016)

    Article  CAS  Google Scholar 

  60. L.-H. Fu, C. Qi, M.-G. Ma, P. Wan, Multifunctional cellulose-based hydrogels for biomedical applications. J. Mater. Chem. 7, 1541–1562 (2019)

    CAS  Google Scholar 

  61. M. Abbaszadeh, S.M. Meybodi, A. Zeri, E.M. Khorasgani, H.M. Heravi, N. Kasaiyan, Cellulose acetate nanofibrous wound dressings loaded with 1% probucol alleviate oxidative stress and promote diabetic wound healing: an in vitro and in vivo study. Cellulose 29, 5359–5374 (2022)

    Article  CAS  Google Scholar 

  62. S. Farzamfar, M. Naseri-Nosar, A. Vaez, F. Esmaeilpour, A. Ehterami, H. Sahrapeyma, H. Samadian, A.-A. Hamidieh, S. Ghorbani, A. Goodarzi, A. Azimi, M. Salehi, Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose 25, 1229–1238 (2018)

    Article  CAS  Google Scholar 

  63. M.V. Konovalova, D.S. Tsaregorodtseva, A.N. Venzhik, R.A. Poltavtseva, E.V. Svirshchevskya, Antiadhesion effect of materials based on carboxymethylchitosan and carboxymethylcellulose. Appl. Biochem. Microbiol. 58, 155–160 (2022)

    Article  CAS  Google Scholar 

  64. P. Nidhi, K. Dev, P. Negi, A. Sourirajan, Development and evaluation of hydrogel formulation comprising essential oil of Mentha longifolia L. for oral candidiasis. Adv. Tradit. Med. (2022). https://doi.org/10.1007/s13596-022-00636-4

    Article  Google Scholar 

  65. A. Mahmood, D. Patel, B. Hickson, J. DesRochers, X. Hu, Recent progress in biopolymer-based hydrogel materials for biomedical applications. Int. J. Mol. Sci. 23, 1415 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. H. Bai, Z. Li, S. Zhang, W. Wang, W. Dong, Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr. 200, 468–476 (2018)

    Article  CAS  Google Scholar 

  67. H. Luo, R. Cha, J. Li, W. Hao, Y. Zhang, F. Zhou, Advances in tissue engineering of nanocellulose-based scaffolds: a review. Carbohydr. Polym. 224, 115144 (2019)

    Article  CAS  PubMed  Google Scholar 

  68. H.T.T. Nguyen, N.H.N. Do, H.D. Lac, P.L.N. Nguyen, P.K. Le, Synthesis, properties, and applications of chitosan hydrogels as anti-inflammatory drug delivery system. J. Porous Mater. 30, 655–670 (2023)

    Article  CAS  Google Scholar 

  69. G. Bajaj, W.G.V. Alstine, Y. Yeo, Zwitterionic Chitosan derivative, a new biocompatible pharmaceutical excipient Prevents Endotoxin-Mediated Cytokine. Release. PLoS ONE 7, e30899 (2012)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. D. George, P.U. Maheswari, K.M.M.S. Begum, Cysteine conjugated chitosan based green nanohybrid hydrogel embedded with zinc oxide nanoparticles towards enhanced therapeutic potential of naringenin. React. Funct. Polym. 148, 104480 (2020)

    Article  CAS  Google Scholar 

  71. M. Ghanavi, A. Khoshandam, S. Aslzad, M. Fathi, A. Barzegari, E.D. Abdolahinia, K. Adibkia, J. Barar, Y. Omidi, Injectable thermosensitive PEG-g-chitosan hydrogel for ocular delivery of vancomycin and prednisolone. J. Drug. Deliv. Sci. Technol. 83, 104385 (2023)

    Article  CAS  Google Scholar 

  72. S. Tiwari, P. Bahadur, Modified hyaluronic acid based materials for biomedical applications. Int. J. Biol. Macromol. 121, 556–571 (2019)

    Article  CAS  PubMed  Google Scholar 

  73. R. Ucm, M. Aem, Z. Lhb, V. Kumar, M.J. Taherzadeh, V.K. Garlapati, A.K. Chandel, Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications. Bioengineered 13, 9645–9661 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. A. Manzoor, A.H. Dar, V.K. Pandey, R. Shams, S. Khan, P.S. Panesar, J.F. Kennedy, U. Fayaz, S.A. Khan, Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: a review. Int. J. Biol. Macromol. 213, 987–1006 (2022)

    Article  CAS  PubMed  Google Scholar 

  75. Y.A. Attia, A.M.A. Nazawi, H. Elsayed, M.W. Sadik, Carbon nanotubes catalyzed UV-trigger production of hyaluronic acid from Streptococcus equi. Saudi J. Biol. Sci. 28, 84–491 (2021)

    Article  Google Scholar 

  76. Y. Zhang, J. Dong, G. Xu, R. Han, J. Zhou, Y. Ni, Efficient production of hyaluronic acid by Streptococcus zooepidemicus using two-stage semi-continuous fermentation. Bioresour. Technol. 377, 128896 (2023)

    Article  CAS  PubMed  Google Scholar 

  77. Y. Ma, Y. Qiu, C. Yu, S. Li, H. Xu, Design and construction of a Bacillus amyloliquefaciens cell factory for hyaluronic acid synthesis from Jerusalem artichoke inulin. Int. J. Biol. Macromol. 205, 410–418 (2022)

    Article  CAS  PubMed  Google Scholar 

  78. R.M.M. Melero-Fernandez, U.T. Arasu, R. Kärnä, S. Oikari, K. Rilla, D. Vigetti, A. Passi, P. Heldin, M.I. Tammi, A.J. Deen, Effects of mutations in the post-translational modification sites on the trafficking of hyaluronan synthase 2 (HAS2). Matrix Biol. 80, 85–103 (2019)

    Article  Google Scholar 

  79. H. Wu, N. Bu, J. Chen, Y, Chen, R, Sun, C. Wu, J. Peng, Construction of Konjac glucomannan/oxidized hyaluronic acid hydrogels for controlled drug release. Polymers 14, 927 (2022)

  80. N.C. Pan, G.T. Bersaneti, S. Mali, M.A.P.C. Celligoi, Films based on blends of polyvinyl alcohol and microbial hyaluronic acid. Braz. Arch. Biol. Technol. 63, e20190386 (2020)

    Article  CAS  Google Scholar 

  81. I.S. Bayer, Hyaluronic acid and controlled release: a review. Molecules 6, 2649 (2020)

    Article  Google Scholar 

  82. S. Liu, X. Liu, Y. Ren, P. Wang, Y. Pu, R. Yang, X. Wang, X. Tan, Z. Ye, V. Maurizot, B. Chi, Mussel-inspired dual-cross-linking hyaluronic acid/ε-polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Appl Mater. Interfaces. 12, 27876–27888 (2020)

    Article  CAS  PubMed  Google Scholar 

  83. S.S. Kwon, B.J. Kong, S.N. Park, Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose–hyaluronic acid and for applications as transdermal delivery systems for skin lesions. Eur. J. Pharm. Biopharm. 92, 146–154 (2015)

    Article  CAS  PubMed  Google Scholar 

  84. J. Zhang, T. Liu, Z. Liu, Q. Wang, Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement. Polymer 173, 103–109 (2019)

    Article  CAS  Google Scholar 

  85. D.L. Tran, P.L. Thi, T.T.H. Thi, K.D. Park, Novel enzymatically crosslinked chitosan hydrogels with free-radical-scavenging property and promoted cellular behaviors under hyperglycemia. Prog. Nat. Sci. 30, 661–668 (2020)

    Article  CAS  Google Scholar 

  86. W. Hu, Z. Wang, Y. Xiao, S. Zhang, J. Wang, Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. (2019). https://doi.org/10.1039/c8bm01246f

    Article  PubMed  Google Scholar 

  87. J. Xu, Y. Liu, Hydrogels based on Schiff base linkages for. Molecules 19, 1–21 (2019)

    Google Scholar 

  88. M. Muhammad, C. Willems, J. Rodríguez-Fernández, G. Gallego-Ferrer, T. Growth, Synthesis and characterization of oxidized polysaccharides for in situ forming hydrogels. Biomolecules 10, 1–18 (2020)

    Article  CAS  Google Scholar 

  89. G.S. Krishnakumar, S. Sampath, S. Muthusamy, M.A. John, Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: a systematic review. Mater. Sci. Eng. C. 96, 941–954 (2019)

    Article  CAS  Google Scholar 

  90. S. Maiz-Fernández, L. Pérez-Álvarez, U. Silván, J.L. Vilas-Vilela, S. Lanceros-Méndez, Dynamic and self-healable chitosan/hyaluronic acid-based in situ-forming hydrogels. Gels. 8, 477 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  91. D.M. Casali, M.J. Yost, M.A. Matthews, Eliminating glutaraldehyde from crosslinked collagen films using supercritical CO2. J. Biomed. Mater. Res. A. 106, 86–94 (2018)

    Article  CAS  PubMed  Google Scholar 

  92. T. Takigawa, Y. Endo, Effects of glutaraldehyde exposure on human health. J. Occup. Health. 48, 75–87 (2006)

    Article  CAS  PubMed  Google Scholar 

  93. I. Kondratowicz, I. Shalayel, M. Nadolska, S. Tsujimura, Y. Yamagata, I. Shitanda, A. Zebda, Impact of lactic acid and genipin concentration on physicochemical and mechanical properties of chitosan membranes. J. Polym. Environ. 31, 221–123 (2023)

    Google Scholar 

  94. Y. Yu, S. Xu, S. Li, H. Pan, Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater. Sci. (2021). https://doi.org/10.1039/d0bm01403f

    Article  PubMed  Google Scholar 

  95. J.A. Olmo, L. Pérez-Álvarez, V. Sáez-Martínez, S. Benito-Cid, L. Ruiz-Rubio, R. Pérez-González, J.L. Vilas-Vilela, J.M. Alonso, Wound healing and antibacterial chitosan-genipin hydrogels with controlled drug delivery for synergistic anti-inflammatory activity. Int. J. Biol. Macromol. 203, 679–694 (2022)

    Article  Google Scholar 

  96. T. Tan, J. Zhou, X. Gao, X. Tang, H. Zhang, Synthesis, characterization and water absorption behavior of tartaric acid-modified cellulose gel from corn stalk pith. Ind. Crop. Prod. 169, 113641 (2021)

    Article  CAS  Google Scholar 

  97. N.S.M. Sechi, P.T. Marques, Preparation and physicochemical, structural and morphological characterization of phosphorylated starch. Mater Res. 20, 174–180 (2017)

    Article  Google Scholar 

  98. N. Maaloul, P. Oulego, M. Rendueles, A. Ghorbal, M. Diaz, Enhanced Cu(II) adsorption using sodium trimetaphosphate-modified cellulose beads: equilibrium, kinetics, adsorption mechanisms, and reusability. Environ. Sci. Pollut. Res. 28, 446523–446539 (2021)

    Article  Google Scholar 

  99. F.G. Colodi, D.R.B. Ducatti, M.D. Noseda, M.M. Carvalho, S.M.B. Winnischofer, M.E.R. Duarte, Semi-synthesis of hybrid ulvan-kappa-carrabiose polysaccharides andevaluation of their cytotoxic and anticoagulant effects. Carbohydr. Polym. 267, 118161 (2021)

    Article  CAS  PubMed  Google Scholar 

  100. X. Wang, Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2, 98–102 (2019)

    Article  CAS  Google Scholar 

  101. M. Todorovic, D.M. Perrin, Recent developments in catalytic amide bond formation. Pept. Sci. 112, e24210 (2020)

    Article  CAS  Google Scholar 

  102. M.T. Sabatini, L.T. Boulton, H.F. Sneddon, T.D. Sheppard, A green chemistry perspective on catalytic amide bond formation. Nat. Catal. 2, 10–17 (2019)

    Article  CAS  Google Scholar 

  103. Y.Y. Hsu, K.L. Liu, H.H. Yeh, H.R. Lin, H.L. Wu, J.C. Tsai, Sustained release of recombinant thrombomodulin from cross-linked gelatin/hyaluronic acid hydrogels potentiate wound healing in diabetic mice. Eur. J. Pharm. Biopharm. 135, 61–71 (2019)

    Article  CAS  PubMed  Google Scholar 

  104. C.H. Cheng, Y.S. Chen, H.T. Chang, K.C. Chang, S.M. Huang, S.M. Liu, W.C. Chen, In vitro evaluation of antibacterial activity and biocompatibility of synergistically cross-linked gelatin-alginate hydrogel beads as gentamicin carriers. J. Drug Deliv. Sci. Technol. 79, 104078 (2023)

    Article  CAS  Google Scholar 

  105. N. Nakajima, Y. Ikada, Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjugate. Chem. 6, 123–130 (1995)

    Article  CAS  Google Scholar 

  106. A. Sannino, S. Pappadà, M. Madaghiele, A. Maffezzoli, L. Ambrosio, L. Nicolais, Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46, 11206–11212 (2005)

    Article  CAS  Google Scholar 

  107. D.E. Rodríguez-Félix, D. Pérez-Caballero, T. del Castillo-Castro, M.M. Castillo-Ortega, Y. Garmendía-Diago, J. Alvarado-Ibarra, M. Plascencia-Jatomea, A.S. Ledezma-Pérez, S.E. Burruel-Ibarra, Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potential use in drug delivery. Polym. Bull. 80, 2617–2636 (2023)

    Article  Google Scholar 

  108. K.C. Chang, W.-C. Chen, C.-H. Chen, C.-L. Ko, S.-M. Liu, J.-C. Chen, Chemical cross-linking on gelatin-hyaluronan loaded with hinokitiol for the preparation of guided tissue regeneration hydrogel membranes with antibacterial and biocompatible properties. Mater. Sci. Eng. C 119, 111576 (2021)

    Article  CAS  Google Scholar 

  109. I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A.H. Caballero, N. Acosta, Chitosan: an overview of its properties and applications. Polymers (Basel). 13 (2021)

  110. S. Huang, X. Kon, Y. Xiong, X. Zhang, H. Chen, W. Jiang, Y. Niu, W. Xu, C. Ren, An overview of dynamic covalent bonds in polymer material and their applications. Eur. Polym. J. 141, 110094 (2020)

    Article  CAS  Google Scholar 

  111. D.-Q. Li, S.-Y. Wang, Y.-J. Meng, J.-F. Li, J. Li, An injectable, self-healing hydrogel system from oxidized pectin/chitosan/γ-Fe2O3. Int. J. Biol. Macromol. 164, 4566–4574 (2020)

    Article  CAS  PubMed  Google Scholar 

  112. E. Raczuk, B. Dmochowska, J. Samaszko-Fiertek, J. Madaj, Different Schiff bases—structure, importance and classification. Molecules 27, 787 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. P. Dubey, S. Gupta, A.K. Singh, Complexes of Pd(II), η6-C6H6Ru(II), and η5-Cp*Rh(III) with Chalcogenated Schiff bases of Anthracene-9-carbaldehyde and base-free catalytic transfer hydrogenation of aldehydes/ketones and N-alkylation of amines. Organometallics 38, 944–961 (2019)

    Article  CAS  Google Scholar 

  114. F. Ghobakhloo, D. Azarifar, M. Mohammadi, H. Keypour, H. Zeynali, Copper(II) Schiff-base complex modified UiO-66-NH2(Zr) metal-organic framework catalysts for knoevenagel condensation-Michael addition-cyclization reactions. Inorg. Chem. 61, 4825–4841 (2022)

    Article  CAS  PubMed  Google Scholar 

  115. M. Skrodzki, V. Patroniak, P. Pawluć, Schiff base Cobalt(II) complex-catalyzed highly markovnikov-selective hydrosilylation of alkynes. Org. Lett. 23, 663–667 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. J.L. Pratihar, P. Mandal, C.K. Lai, S. Chattopadhyay, Tetradentate amido azo Schiff base Cu(II), Ni(II) and Pd(II) complexes: synthesis, characterization, spectral properties, and applications to catalysis in C-C coupling and oxidation reaction. Polyhedron 161, 317–324 (2019)

    Article  CAS  Google Scholar 

  117. J. Liu, J. Li, F. Yu, Y. Xin, Zhao, X. Mei, Mo, J. Feng, Pan, In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis. Int. J. Biol. Macromol. 147, 653–666 (2020)

  118. X. Peng, L. Li, J. Xing, C. Cheng, M. Hu, Y. Luo, S. Shi, Y. Liu, Z. Cui, X. Yu, Cross-linking porcine peritoneum by oxidized konjac glucomannan: a novel method to improve the properties of cardiovascular substitute material. J. Leather Sci. Eng. 5, 1–17 (2023)

    Google Scholar 

  119. X. Dang, P. Liu, M. Yang, H. Deng, Z. Shan, W. Zhen, Production and characterization of dialdehyde cellulose through green and sustainable approach. Cellulose 26, 9503–9515 (2019)

    Article  CAS  Google Scholar 

  120. C. Qian, T. Zhang, J. Gravesande, C. Baysah, X. Song, J. Xing, J, Injectable and self-healing polysaccharide-based hydrogel for pH-responsive drug release. Int. J. Biol. Macromol. 123, 140–148 (2019)

    Article  CAS  PubMed  Google Scholar 

  121. R. Jahanban-Esfahlan, H. Derakhshankhah, B. Haghshenas, B, Massoumi, M, Abbasian, M. Jaymand, A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int. J. Biol. Macromol. 156, 438–445 (2020)

  122. Y. Zhang, X. Li, N. Zhong, Y. Huang, K. He, X. Ye, Injectable in situ dual-crosslinking hyaluronic acid and sodium alginate based hydrogels for drug release. J. Biomater. Sci. Polym. Ed. 30, 995–1007 (2019)

    Article  CAS  PubMed  Google Scholar 

  123. X. Zhang, Y. Pan, S. Li, L. Xing, S. Du, G. Yuan, J. Li, T. Zhou, D. Xiong, H. Tan, Z. Ling, Y. Chen, X. Hu, X. Niu, Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. Int. J. Biol. Macromol. 164, 2204–2214 (2020)

    Article  CAS  PubMed  Google Scholar 

  124. F.A. Ngwabebhoh, R. Patwa, O. Zandraa, N. Saha, P. Saha, Preparation and characterization of injectable self-antibacterial gelatin/carrageenan/bacterial cellulose hydrogel scaffolds for wound healing application. J. Drug Deliv. Sci. Technol. 63, 102415 (2021)

    Article  CAS  Google Scholar 

  125. E. Stoll, T. Tongue, K.G. Andrews, D. Valette, D.J. Hirst, R.M. Denton, A practical catalytic reductive amination of carboxylic acids. Chem. Sci. 11, 9494–9500 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. J. Magano, Large-scale amidations in process chemistry: practical considerations for reagent selection and reaction execution. Org. Process Res. Dev. 26, 1562–1689 (2022)

    Article  CAS  Google Scholar 

  127. M.L. Pita-López, G. Fletes-Vargas, H. Espinosa-Andrews, R. Rodríguez-Rodríguez, Physically cross-linked chitosan-based hydrogels for tissue engineering applications: a state-of-the-art review. Eur. Polym. J. 145, 110176 (2021)

    Article  Google Scholar 

  128. Z.-Y. Qin, X.-W. Jia, Q. Liu, B.-H. Kong, H. Wang, Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. Int. J. Biol. Macromol. 137, 224–231 (2019)

    Article  CAS  PubMed  Google Scholar 

  129. Z. Li, Z. Lin, Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate. 2, e21 (2021)

    Article  CAS  Google Scholar 

  130. V.V. Khutoryanskiy, A.V. Dubolazov, G.A. Mun, pH- and ionic strength effects on interpolymer complexation via hydrogen-bonding. Hydrogen. Interpolymer complexes form. Struct. Appl. 53, 1–22 (2009)

    Google Scholar 

  131. Z. Shariatinia, A. Mazloom-Jalali, Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations. J. Mol. Liq. 273, 346–367 (2019)

    Article  CAS  Google Scholar 

  132. S. Ata, A. Rasool, A. Islam, I. Bibi, M. Rizwan, M.K. Azeem, A.R. Qureshi, M. Iqbal, Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int. J. Biol. Macromol. 155, 1236–1244 (2020)

    Article  CAS  PubMed  Google Scholar 

  133. S. Saboo, U.S. Kestur, D.P. Flaherty, L.S. Taylor, Congruent release of drug and polymer from amorphous solid dispersions: insights into the role of drug-polymer hydrogen bonding, surface crystallization, and glass transition. Mol. Pharm. 17, 1261–2127 (2020)

    Article  CAS  PubMed  Google Scholar 

  134. Z. Luo, C. Liu, P. Quan, D. Yang, H. Zhao, X. Wan, L. Fang, Mechanistic insights of the controlled release capacity of polar functional group in transdermal drug delivery system: the relationship of hydrogen bonding strength and controlled release capacity. Acta Pharm. Sin. B 10, 928–945 (2020)

    Article  PubMed  Google Scholar 

  135. H. Ma, J. Yu, L. Liu, Y. Fan, An optimized preparation of nanofiber hydrogels derived from natural carbohydrate polymers and their drug release capacity under different pH surroundings. Carbohydr. Polym. 265, 118008 (2021)

    Article  CAS  PubMed  Google Scholar 

  136. Y. Chen, S.Y.H. Abdalkarim, H.-Y. You, Y. Li, J. Xu, J. Marek, J. Yao, K.C. Tam, Double stimuli-responsive cellulose nanocrystals reinforced electrospun PHBV composites membrane for intelligent drug release. Int. J. Biol. Macromol. 155, 330–339 (2020)

    Article  CAS  PubMed  Google Scholar 

  137. J. Long, A.E. Etxeberria, A.V. Nand, C.R. Bunt, S. Ray, A. Seyfoddin, A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater. Sci. Eng. C. 104, 109873 (2019)

    Article  CAS  Google Scholar 

  138. H. Baniasadi, Z. Madani, R. Ajdary, O.J. Rojas, J. Seppälä, Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Mater. Sci. Eng. C. 130, 112424 (2021)

    Article  CAS  Google Scholar 

  139. G. Janarthanan, I. Noh, Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications. J. Mater. Sci. Technol. 63, 35–53 (2021)

    Article  CAS  Google Scholar 

  140. M. Diener, J. Adamcik, J. Bergfreund, S. Catalini, P. Fischer, R. Mezzenga, R. Fibrillar, Quaternary structures induced by divalent ions in a carboxylated linear polysaccharide. ACS Macro Lett. 9, 115–121 (2020)

    Article  CAS  PubMed  Google Scholar 

  141. A.S. Kazachenko, N.Y. Vasilieva, V.S. Borovkova, O.Y. Fetisova, N. Issaoui, Y.N. Malyar, E.V. Elsuf’ev, A.A. Karacharov, A.M. Skripnikov, A.V. Miroshnikova, A.S. Kazachenko, D.V. Zimonin, V.A. Ionin, Food xanthan polysaccharide sulfation process with sulfamic acid. Foods 10, 2571 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Y. Cohen, R. Rutenberg, G. Cohen, B. Veltman, R. Gvirtz, E. Fallik, D. Danino, E. Eltzov, E. Poverenov, Aminated polysaccharide-based nanoassemblies as stable biocompatible vehicles enabling crossing of biological barriers: an effective transdermal delivery of diclofenac medicine. ACS Appl. Bio Mater. 3, 2209–2217 (2020)

    Article  CAS  PubMed  Google Scholar 

  143. M. Ishihara, S. Kishimoto, S. Nakamura, Y. Sato, H. Hattori, Polyelectrolyte complexes of natural polymers and their biomedical applications. Polymers (Basel). 11, 1–12 (2019)

    Article  Google Scholar 

  144. X. Hu, Y. Wang, L. Zhang, M. Xy, Construction of self-assembled polyelectrolyte complex hydrogel based on oppositely charged polysaccharides for sustained delivery of green tea polyphenols. Food Chem. 306, 125632 (2020)

    Article  CAS  PubMed  Google Scholar 

  145. S. Tang, J. Yang, L. Lin, K. Peng, Y. Chen, S. Jin, W. Yao, Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem. Eng. J. 393, 124728 (2020)

    Article  CAS  Google Scholar 

  146. J. Huang, Y.-L. Wang, X.-D. Yu, Y.-N. Zhou, L.-Q. Chu, Enhanced fluorescence of carboxymethyl chitosan via metal ion complexation in both solution and hydrogel states. Int. J. Biol. Macromol. 152, 50–56 (2020)

    Article  CAS  PubMed  Google Scholar 

  147. W.N. Sharratt, C.G. Lopes, M. Sarkis, G. Tyagi, R. O’Connell, S.E. Rogers, J.T. Cabral, Ionotropic gelation fronts in sodium carboxymethyl cellulose for hydrogel particle formation. Gels. 7, 1–21 (2021)

    Article  Google Scholar 

  148. S. Pedroso-Santana, N. Fleitas-Salazar, Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym. Int. 69, 443–447 (2020)

    Article  CAS  Google Scholar 

  149. M.C. Cortez-Trejo, J.D. Figueroa-Cárdenas, D. Quintanar-Guerrero, D.K. Baigts-Allende, J. Manríquez, S. Mendoza, Effect of pH and protein-polysaccharide ratio on the intermolecular interactions between amaranth proteins and xanthan gum to produce electrostatic hydrogels. Food Hydrocoll. 129, 107648 (2022)

    Article  CAS  Google Scholar 

  150. H. Hamedi, S. Moradi, A.E. Tonelli, S.M. Hudson, Preparation and characterization of chitosan–alginate polyelectrolyte complexes loaded with antibacterial thyme oil nanoemulsions. Appl. Sci. 9, 3933 (2019)

    Article  CAS  Google Scholar 

  151. S. Maiz-Fernández, N. Barroso, L. Pérez-Álvarez, U. Silván, J.L. Vilas-Vilela, S. Lanceros-Mendez, 3D printable self-healing hyaluronic acid/chitosan polycomplex hydrogels with drug release capability. Int. J. Biol. Macromol. 188, 820–832 (2021)

    Article  PubMed  Google Scholar 

  152. W. Deng, Y. Tang, J. Mao, Y. Zhou, T. Chen, X. Zhu, Cellulose nanofibril as a crosslinker to reinforce the sodium alginate/chitosan hydrogels. Int. J. Biol. Macromol. 189, 890–899 (2021)

    Article  CAS  PubMed  Google Scholar 

  153. A.M. Omer, M.S. Ahmed, G.M. El-Subruiti, R.E. Khalifa, A.S. Eltaweil, Ph-sensitive alginate/carboxymethyl chitosan/aminated chitosan microcapsules for efficient encapsulation and delivery of diclofenac sodium. Pharmaceutics 13, 338 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Y.A. Khan, K. Ozaltin, A. Bernal-Ballen, A. Di Martino, Chitosan-alginate hydrogels for simultaneous and sustained releases of ciprofloxacin, amoxicillin and vancomycin for combination therapy. J. Drug Deliv. Sci. Technol. 61, 102126 (2021)

    Article  CAS  Google Scholar 

  155. A. Goodarzi, M. Khanmohammadi, S. Ebrahimi-Barough, M. Azami, A. Amani, A. Baradaran-Rafii, N.L. bakhshaiesh, A. Ai, A. Farzin, J. Ai, Alginate-based hydrogel containing taurine-loaded chitosan nanoparticles in biomedical application. Arch. Neurosci. 6, e86349 (2019)

  156. J. Chalitangkoon, M. Wongkittisin, P. Monvisade, Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings. Int. J. Biol. Macromol. 159, 194–203 (2020)

    Article  CAS  PubMed  Google Scholar 

  157. N. Pilipenko, O.H. Gonçalves, E. Bona, I.P. Fernandes, J.A. Pinto, G.D. Sorita, F.V. Leimann, M.F. Barreiro, Tailoring swelling of alginate-gelatin hydrogel microspheres by crosslinking with calcium chloride combined with transglutaminase. Carbohydr. Polym. 223, 115035 (2019)

    Article  CAS  PubMed  Google Scholar 

  158. H.-S. Kim, J. Yang, K. Kim, U.S. Shin, Biodegradable and injectable hydrogels as an immunosuppressive drug delivery system. Mater. Sci. Eng. C 223, 472–481 (2019)

    Article  Google Scholar 

  159. S. Potiwiput, H. Tan, G. Yuan, S. Li, T. Zhou, J. Li, Y. Jia, D. Xiong, X. Hu, Z. Ling, Y. Chen, Dual-crosslinked alginate/carboxymethyl chitosan hydrogel containing in situ synthesized calcium phosphate particles for drug delivery application. Mater. Chem. Phys. 241 (2020)

  160. L. Wang, J. Li, D. Zhang, S. Ma, J. Zhang, F. Gao, F. Guan, M. Yao, Dual-enzymatically crosslinked and injectable hyaluronic acid hydrogels for potential application in tissue engineering. RSC Adv. 1, 2870–2876 (2020)

    Article  ADS  Google Scholar 

  161. H.Y. Jung, P.L. Thi, K.-H. HwangBo, J.W. Bae, K.D. Park, Tunable and high tissue adhesive properties of injectable chitosan based hydrogels through polymer architecture modulation. Carbohydr. Polym. 261, 117810 (2021)

    Article  CAS  PubMed  Google Scholar 

  162. E. Badali, M. Hosseini, M. Mohajer, S. Hassanzadeh, S. Sepideh, J. Hilborn, M. Khanmohammadi, Enzymatic crosslinked hydrogels for biomedical application. Polym. Sci. Ser. A 63, S1–S22 (2022)

    Article  Google Scholar 

  163. R.G. Rosenthal, X.D. Zhang, K.I. Đurđić, J.J. Collins, D.A. Weitz, Controlled continuous evolution of enzymatic activity screened at ultrahigh throughput using drop-based microfluidics. Angew. Chem. Int. 62, e202303112 (2023)

    Article  CAS  Google Scholar 

  164. X. Wang, C. Guo, C. Gao, Y. Song, J. Zhang, J. Huang, M. Hui, Synthesis of casein-γ-polyglutamic acid hydrogels by microbial transglutaminase-mediated gelation for controlled release of drugs. J. Biomater. Appl. 36, 237–245 (2021)

    Article  CAS  PubMed  Google Scholar 

  165. T. Wu, C. Liu, X. Hu, Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: a review. Food Chem. 372, 131332 (2022)

    Article  CAS  PubMed  Google Scholar 

  166. C.-K. Sun, C.-J. Ke, Y.-W. Lin, F.-H. Lin, T.-H. Tsai, J.-S. Sun, Transglutaminase cross-linked gelatin-alginate-antibacterial hydrogel as the drug delivery-coatings for implant-related infections. Polymers 13, 414 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. F.W. Krainer, A. Glieder, An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl. Microbiol. Biotechnol. 99, 1611–1625 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. J. Gao, J.M. Karp, R. Langer, N. Joshi, The future of drug delivery. Chem. Mater. 35, 359–363 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. S. Fumoto, K. Nishida, Co-delivery systems of multiple drugs using nanotechnology for future cancer therapy. Chem. Pharm. Bull. 68, 603–612 (2020)

    Article  CAS  Google Scholar 

  170. J.F. Pereira, B.M. Marim, B.M. Simões, F. Yamashita, S. Mali, Hydrogels based on gelatin, xanthan gum, and cellulose obtained by reactive extrusion and thermopressing processes. Prep. Biochem. Biotechnol. (2023). https://doi.org/10.1080/10826068.2022.2162921

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes-DS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Mali.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Data Availability

The statements are properly cited in the paper and no additional data is available.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva, M.T.P., Kishima, J.O.F., Silva, J.B.M.D. et al. Crosslinking Methods in Polysaccharide-Based Hydrogels for Drug Delivery Systems. Biomedical Materials & Devices 2, 288–306 (2024). https://doi.org/10.1007/s44174-023-00118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00118-4

Keywords

Navigation