Skip to main content

Advertisement

Log in

Impact of mechanical engineering innovations in biomedical advancements

  • Reviews
  • Published:
In vitro models Aims and scope Submit manuscript

Abstract

The principal objective of the present paper is to meticulously review the family of biomaterials used in implants. A spectrum of applications of biomaterials in the perspective of prosthesis is also presented. This paper also emphasises on the review of the recent advancements in the field of biomedical implants with respect to mechanical engineering perspective. The latest technologies such as finite element modelling of prosthetic implants, additive manufacturing of implants and certain experimental methods adopted in the field of prosthesis are discussed. Moreover, various models were modelled using SOLIDWORKS® 2022 modelling software and analysed using ANSYS® 2021 R2 finite element analysing software and implant models were additive manufactured to make this review more interesting and for better understanding. Overall, the latest technology in the field of mechanical engineering that fuels its impact in life-saving biomedical engineering has been discussed briefly.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davis R, Singh A, Jackson MJ, et al. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int J Adv Manuf Technol. 2022;120(3):1473–530. https://doi.org/10.1007/S00170-022-08770-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Il IG. Biomaterials in orthopaedics: the past and future with immune modulation. Biomater Res. 2020;24(1):1–4. https://doi.org/10.1186/S40824-020-0185-7/METRICS.

    Article  Google Scholar 

  3. Naleway SE, Thomas V, Restrepo D, Schniepp HC. Advanced manufacturing for biomaterials and biological materials, part II. JOM. 2020;72(4):1432–4. https://doi.org/10.1007/S11837-020-04060-4/METRICS.

    Article  Google Scholar 

  4. Rokaya D. Advances in biomaterials for clinical applications. J Chitwan Med Coll. 2022;11(4):1–3. https://doi.org/10.54530/JCMC.593.

    Article  Google Scholar 

  5. Wegner N, Klein M, Scholz R, Kotzem D, Macias Barrientos M, Walther F. Mechanical in vitro fatigue testing of implant materials and components using advanced characterization techniques. J Biomed Mater Res Part B Appl Biomater. 2022;110(4):898–909. https://doi.org/10.1002/JBM.B.34970.

    Article  CAS  Google Scholar 

  6. Barros SE, Vanz V, Chiqueto K, Janson G, Ferreira E. Mechanical strength of stainless steel and titanium alloy mini-implants with different diameters: an experimental laboratory study. Prog Orthod. 2021;22(1):1–9. https://doi.org/10.1186/S40510-021-00352-W/TABLES/4.

    Article  Google Scholar 

  7. Lewin S, Åberg J, Neuhaus D, et al. Mechanical behaviour of composite calcium phosphate–titanium cranial implants: effects of loading rate and design. J Mech Behav Biomed Mater. 2020:104. https://doi.org/10.1016/j.jmbbm.2020.103701.

  8. Vakrčka P, Jíra A, Hájková P. Mechanical testing and numerical modelling of porous structures improving oseintegration of implants. Acta Polytech CTU Proc. 2020;26:126–32. https://doi.org/10.14311/APP.2020.26.0126.

    Article  Google Scholar 

  9. Ortega-Martínez J, Delgado LM, Ortiz-Hernández M, et al. In vitro assessment of PEEK and titanium implant abutments: screw loosening and microleakage evaluations under dynamic mechanical testing. J Prosthet Dent. 2022;127(3):470–6. https://doi.org/10.1016/j.prosdent.2020.09.033.

    Article  CAS  PubMed  Google Scholar 

  10. Marin E, Boschetto F, Pezzotti G. Biomaterials and biocompatibility: an historical overview. J Biomed Mater Res - Part A. 2020;108(8):1617–33. https://doi.org/10.1002/JBM.A.36930.

    Article  CAS  Google Scholar 

  11. Eftekhar Ashtiani R, Alam M, Tavakolizadeh S, Abbasi K. The role of biomaterials and biocompatible materials in implant-supported dental prosthesis. Evidence-based Complement Altern Med. 2021;2021. doi:https://doi.org/10.1155/2021/3349433

  12. Thanigaivel S, Priya AK, Balakrishnan D, Dutta K, Rajendran S, Soto-Moscoso M. Insight on recent development in metallic biomaterials: strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochem Eng J. 2022;187:108522. https://doi.org/10.1016/J.BEJ.2022.108522.

    Article  CAS  Google Scholar 

  13. Lah NAC, Hussin MH. Titanium and titanium based alloys as metallic biomaterials in medical applications - spine implant case study. Pertanika J Sci Technol. 2019;27(1):459–72.

    Google Scholar 

  14. Annur D, Rokhmanto F, Thaha YN, et al. Processing and characterization of porous titanium for orthopedic implant prepared by argon-atmospheric sintering and arc plasma sintering. Mater Res. 2021;24(6):e20210122. https://doi.org/10.1590/1980-5373-MR-2021-0122.

    Article  CAS  Google Scholar 

  15. Capellato P, Camargo SEA, Silva G, et al. Coated surface on Ti-30Ta alloy for biomedical application: mechanical and in-vitro characterization. Mater Res. 2020;23(6):e20200305. https://doi.org/10.1590/1980-5373-MR-2020-0305.

    Article  CAS  Google Scholar 

  16. Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: past, present and perspective. Eng Regen. 2020;1:6–18. https://doi.org/10.1016/J.ENGREG.2020.05.003.

    Article  Google Scholar 

  17. Wang N, Fuh JYH, Dheen ST, Senthil KA. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res Part B Appl Biomater. 2021;109(2):160–79. https://doi.org/10.1002/JBM.B.34688.

    Article  CAS  Google Scholar 

  18. Kelmers E, Szuba A, King SW, et al. Smart knee implants: an overview of current technologies and future possibilities. Indian J Orthop. 2022;28:1–8. https://doi.org/10.1007/S43465-022-00810-5/FIGURES/1.

    Article  Google Scholar 

  19. Aggarwal AK, Baburaj V. Managing bone defects in primary total knee arthroplasty: options and current trends. Musculoskelet Surg. 2021;105(1):31–8. https://doi.org/10.1007/S12306-020-00683-7.

    Article  CAS  PubMed  Google Scholar 

  20. Olmos AAR, Fertuzinhos A, Campos TD, et al. Osteosynthesis metal plate system for bone fixation using bicortical screws: numerical–experimental characterization. Biology (Basel). 2022;11(6) https://doi.org/10.3390/BIOLOGY11060940.

  21. Ma Z, Liu B, Li S, et al. A novel biomimetic trabecular bone metal plate for bone repair and osseointegration. Regen Biomater. 2023:10. https://doi.org/10.1093/RB/RBAD003.

  22. Müller-Heupt LK, Schiegnitz E, Kaya S, Jacobi-Gresser E, Kämmerer PW, Al-Nawas B. Diagnostic tests for titanium hypersensitivity in implant dentistry: a systematic review of the literature. Int J Implant Dent. 2022;8(1):1–11. https://doi.org/10.1186/S40729-022-00428-0/FIGURES/4.

    Article  Google Scholar 

  23. Ruiz Henao PA, Caneiro Queija L, Mareque S, Tasende Pereira A, Liñares González A, Blanco CJ. Titanium vs ceramic single dental implants in the anterior maxilla: a 12-month randomized clinical trial. Clin Oral Implants Res. 2021;32(8):951–61. https://doi.org/10.1111/CLR.13788.

    Article  CAS  PubMed  Google Scholar 

  24. Major R, Gawlikowski M, Sanak M, Lackner JM, Kapis A. Design, manufacturing technology and in-vitro evaluation of original, polyurethane, petal valves for application in pulsating ventricular assist devices. Polymers. 2020;12(12):2986. https://doi.org/10.3390/POLYM12122986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rafikova G, Piatnitskaia S, Shapovalova E, et al. Interaction of ceramic implant materials with immune system. Int J Mol Sci. 2023;24(4) https://doi.org/10.3390/IJMS24044200.

  26. Qu Y, Liu L. Zirconia materials for dental implants: a literature review. Front Dent Med. 2021;2:57. https://doi.org/10.3389/FDMED.2021.687983.

    Article  Google Scholar 

  27. da Hora Sales PH, Barros AW, de Oliveira-Neto OB, de Lima FJ, Carvalho AD, Leao JC. Do zirconia dental implants present better clinical results than titanium dental implants? A systematic review and meta-analysis. J Stomatol Oral Maxillofac Surg. 2023;124(1):101324. https://doi.org/10.1016/J.JORMAS.2022.10.023.

    Article  Google Scholar 

  28. Borgonovo AE, Ferrario S, Maiorana C, Vavassori V, Censi R, Re D. A clinical and radiographic evaluation of zirconia dental implants: 10-year follow-up. Int J Dent. 2021;2021 https://doi.org/10.1155/2021/7534607.

  29. Sadeghzade S, Liu J, Wang H, et al. Recent advances on bioactive baghdadite ceramic for bone tissue engineering applications: 20 years of research and innovation (a review). Mater Today Bio. 2022;17:100473. https://doi.org/10.1016/J.MTBIO.2022.100473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ene R, Nica M, Ene D, Cursaru A, Cirstoiu C. Review of calcium-sulphate-based ceramics and synthetic bone substitutes used for antibiotic delivery in PJI and osteomyelitis treatment. EFORT Open Rev. 2021;6(5):297–304. https://doi.org/10.1302/2058-5241.6.200083.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Al-Nahlawi T, Ala Rachi M, Abu HA. Endodontic perforation closure by five mineral oxides silicate-based cement with/without collagen sponge matrix. Int J Dent. 2021;2021 https://doi.org/10.1155/2021/4683689.

  32. Stukan M, Buderath P, Szulczyński B, Gębicki J, Kimmig R. Accuracy of ultrasonography and magnetic resonance imaging for preoperative staging of cervical cancer—analysis of patients from the prospective study on total mesometrial resection. Diagnostics. 2021;11(10):1749. https://doi.org/10.3390/DIAGNOSTICS11101749/S1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Spałek J, Ociepa P, Deptuła P, et al. Biocompatible materials in otorhinolaryngology and their antibacterial properties. Int J Mol Sci. 2022;23(5):2575. https://doi.org/10.3390/IJMS23052575.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Al-Dujaili AMA, Aswad AM, Oribi IM. Preparation and characterization of hydroxyapatite and optimizing its properties using regression model. J Phys Conf Ser. 2021;1973(1) https://doi.org/10.1088/1742-6596/1973/1/012141.

  35. Kumar P, Dehiya BS, Sindhu A. Bioceramics for hard tissue engineering applications: a review. Int J Appl Eng Res. 2018;13(5):2744–52. Accessed April 18, 2023. http://www.ripublication.com

    Google Scholar 

  36. Huang J, Best S. Ceramic biomaterials for tissue engineering. Tissue Eng Using Ceram Polym Second Ed. 2014;1:3–34. https://doi.org/10.1533/9780857097163.1.3.

    Article  CAS  Google Scholar 

  37. Kovylin RS, Aleynik DY, Fedushkin IL. Modern porous polymer implants: synthesis, properties, and application. Polym Sci Ser C. 2021;63(1):29–46. https://doi.org/10.1134/S1811238221010033.

    Article  CAS  Google Scholar 

  38. Panchal SS, Vasava DV. Biodegradable polymeric materials: synthetic approach. ACS Omega. 2020;5(9):4370–9. https://doi.org/10.1021/ACSOMEGA.9B04422/ASSET/IMAGES/LARGE/AO9B04422_0002.JPEG.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karayilan M, Clamen L, Becker ML. Polymeric materials for eye surface and intraocular applications. Biomacromolecules. 2021;22(2):223–61. https://doi.org/10.1021/ACS.BIOMAC.0C01525/ASSET/IMAGES/MEDIUM/BM0C01525_0038.GIF.

    Article  CAS  PubMed  Google Scholar 

  40. Tran NPD, Yang MC. Synthesis and characterization of silicone contact lenses based on TRIS-DMA-NVP-HEMA hydrogels. Polymers (Basel). 2019;11(6) https://doi.org/10.3390/POLYM11060944.

  41. Kappel RM, Pruijn JM. Explantation of silicone breast implants ameliorates gel bleed related health complaints in women with breast implant illness. Clin Med Rev Case Rep. 2020;2020:301. https://doi.org/10.23937/2378-3656/1410301.

    Article  Google Scholar 

  42. Alcocer P. Presentation from FELAQ. Cir Plast Ibero-Latinoamericana. 2020;46:S5–6. https://doi.org/10.4321/S0376-78922020000200003.

    Article  Google Scholar 

  43. Sidle DM, Stolovitzky P, O’Malley EM, Ow RA, Nachlas NE, Silvers S. Bioabsorbable implant for treatment of nasal valve collapse with or without concomitant procedures. Facial Plast Surg. 2021;37(5):673–80. https://doi.org/10.1055/s-0041-1726464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Villanueva K, Martin D, Martinkovich S, Blomain EW. Treatment of a chronically infected nasal silicone prosthesis with continuous antibiotic irrigation and gentamicin-impregnated polymethylmethacrylate beads. JPRAS Open. 2018;15:18–24. https://doi.org/10.1016/J.JPRA.2017.10.001.

    Article  PubMed  Google Scholar 

  45. Dhanasingh A. Design of a cochlear implant electrode. ENT Updat. 2022;12(2):97–109. https://doi.org/10.5152/entupdates.2022.22213.

    Article  Google Scholar 

  46. Blume C, Kraus X, Heene S, et al. Vascular implants – new aspects for in situ tissue engineering. Eng Life Sci. 2022;22(3-4, 344):–360. https://doi.org/10.1002/ELSC.202100100.

  47. Leal BBJ, Wakabayashi N, Oyama K, Kamiya H, Braghirolli DI, Pranke P. Vascular tissue engineering: polymers and methodologies for small caliber vascular grafts. Front Cardiovasc Med. 2020;7:592361. https://doi.org/10.3389/FCVM.2020.592361.

    Article  CAS  PubMed  Google Scholar 

  48. Kennedy SM, Vasanthanathan A, RB JR, Amudhan K. Advancements and prospects of polymer-based hybrid composites for bone plate applications. Polym Technol Mater. 2023;63(1):1–20. https://doi.org/10.1080/25740881.2023.2274564.

    Article  CAS  Google Scholar 

  49. Egbo MK. A fundamental review on composite materials and some of their applications in biomedical engineering. J King Saud Univ - Eng Sci. 2021;33(8):557–68. https://doi.org/10.1016/J.JKSUES.2020.07.007.

    Article  Google Scholar 

  50. Guo Z, Poot AA, Grijpma DW. Advanced polymer-based composites and structures for biomedical applications. Eur Polym J. 2021;149:110388. https://doi.org/10.1016/j.eurpolymj.2021.110388.

    Article  CAS  Google Scholar 

  51. Yadav R, Meena A, Patnaik A. Biomaterials for dental composite applications: a comprehensive review of physical, chemical, mechanical, thermal, tribological, and biological properties. Polym Adv Technol. 2022;33(6):1762–81. https://doi.org/10.1002/PAT.5648.

    Article  CAS  Google Scholar 

  52. Kavyashree S, Savitha PN, DMD SP. An overview of carbon fiber reinforced composites in prosthetic restoration. Int J Sci Res. 2022;11(6):6607–16. https://doi.org/10.21275/SR22608122651.

    Article  Google Scholar 

  53. Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for tissue engineering applications and current updates in the field: a comprehensive review. AAPS PharmSciTech. 2022;23:3. https://doi.org/10.1208/s12249-022-02419-1.

    Article  Google Scholar 

  54. Petre DG, Leeuwenburgh SCG. The use of fibers in bone tissue engineering. https://home.liebertpub.com/teb. 2022;28(1):141–59. https://doi.org/10.1089/TEN.TEB.2020.0252.

  55. Maharaj PSRS, Vasanthanathan A, Ebenezer FBD, Giriharan R, Athithiyan M. In situ bio printing of carbon fiber reinforced PEEK hip implant stem. AIP Conf Proc. 2022;2653(1):030008. https://doi.org/10.1063/5.0110578.

    Article  CAS  Google Scholar 

  56. Diabb Zavala JM, Leija Gutiérrez HM, Segura-Cárdenas E, et al. Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites. J Mech Behav Biomed Mater. 2021;120:104554. https://doi.org/10.1016/J.JMBBM.2021.104554.

    Article  CAS  PubMed  Google Scholar 

  57. Kabiri A, Liaghat G, Alavi F, et al. Glass fiber/polypropylene composites with potential of bone fracture fixation plates: manufacturing process and mechanical characterization. J Compos Mater. 2020;54(30):4903–19. https://doi.org/10.1177/0021998320940367.

    Article  CAS  Google Scholar 

  58. Hutchinson DJ, Granskog V, von Kieseritzky J, et al. Highly customizable bone fracture fixation through the marriage of composites and screws. Adv Funct Mater. 2021;31(41):2105187. https://doi.org/10.1002/ADFM.202105187.

    Article  CAS  Google Scholar 

  59. Shiroud Heidari B, Ruan R, Vahabli E, et al. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater. 2023;19:179–97. https://doi.org/10.1016/J.BIOACTMAT.2022.04.003.

    Article  CAS  PubMed  Google Scholar 

  60. Pan L, Wang F, Cheng Y, et al. A supertough electro-tendon based on spider silk composites. Nat Commun. 2020;11(1):1–9. https://doi.org/10.1038/s41467-020-14988-5.

    Article  CAS  Google Scholar 

  61. Leblebicioğlu Kurtuluş I, Kilic K, Bal B, Kilavuz A. Finite element analysis of the stress distribution associated with different implant designs for different bone densities. J Prosthodont. 2022;31(7):614–22. https://doi.org/10.1111/JOPR.13539.

    Article  PubMed  Google Scholar 

  62. Zupancic Cepic L, Frank M, Reisinger A, Pahr D, Zechner W, Schedle A. Biomechanical finite element analysis of short-implant-supported, 3-unit, fixed CAD/CAM prostheses in the posterior mandible. Int. J Implant Dent. 2022;8(1):1–13. https://doi.org/10.1186/S40729-022-00404-8.

    Article  Google Scholar 

  63. Ausiello P, Tribst JPM, Ventre M, et al. The role of cortical zone level and prosthetic platform angle in dental implant mechanical response: a 3D finite element analysis. Dent Mater. 2021;37(11):1688–97. https://doi.org/10.1016/J.DENTAL.2021.08.022.

    Article  CAS  PubMed  Google Scholar 

  64. Colic K, Sedmak A, Grbovic A, Tatic U, Sedmak S, Djordjevic B. Finite element modeling of hip implant static loading. Procedia Eng. 2016;149(June):257–62. https://doi.org/10.1016/j.proeng.2016.06.664.

    Article  CAS  Google Scholar 

  65. Shashishekar DC, Sanjay SJ. Finite element modeling and analysis of prosthetic knee joint- a review. Ijireeice. 2021;9(10):264–9. https://doi.org/10.17148/ijireeice.2021.91012.

    Article  Google Scholar 

  66. Denard PJ, Lederman E, Parsons BO, Romeo AA. Finite element analysis of glenoid-sided lateralization in reverse shoulder arthroplasty. J Orthop Res. 2017;35(7):1548–55. https://doi.org/10.1002/jor.23394.

    Article  CAS  PubMed  Google Scholar 

  67. Maharaj PSRS, Maheswaran R, Vasanthanathan A. Numerical analysis of fractured femur bone with prosthetic bone plates. Procedia Eng. 2013;64:1242–51. https://doi.org/10.1016/j.proeng.2013.09.204.

    Article  CAS  Google Scholar 

  68. Rubo JH, Capello Souza EA. Finite-element analysis of stress on dental implant prosthesis. Clin Implant Dent Relat Res. 2010;12(2):105–13. https://doi.org/10.1111/j.1708-8208.2008.00142.x.

    Article  PubMed  Google Scholar 

  69. Myung Y, Lee JG, Cho M, Heo CY. Finite element analysis of long-term changes of the breast after augmentation mammoplasty: implications for implant design. Arch Plast Surg. 2019;46(4):386–9. https://doi.org/10.5999/aps.2019.00346.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Batalu ND, Semenescu A, Mates IM, Negoita OD, Purcarea VL, Badica P. Computer assisted design and finite element analysis of contact lenses. Rom J Ophthalmol. 2016;60(3):132–7.

    PubMed  PubMed Central  Google Scholar 

  71. Huang HL, Fuh LJ, Ko CC, Hsu JT, Chen CC. Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2009;24(3):455–62. http://www.ncbi.nlm.nih.gov/pubmed/19587867. Accessed 10-01-2024

    PubMed  Google Scholar 

  72. Xu J, Yang J, Sohrabi S, Zhou Y, Liu Y. Finite element analysis of the implantation process of overlapping stents. J Med Devices, Trans ASME. 2017;11(2):1–9. https://doi.org/10.1115/1.4036391.

    Article  CAS  Google Scholar 

  73. Kennedy SM, Robert RBJ, Seenikannan P, Arunachalam V, Amudhan K. An investigation on mechanical properties of 3D pen fused zones for additive manufactured parts. Eng Solid Mech. 2023;11(3):263–70. https://doi.org/10.5267/j.esm.2023.3.003.

    Article  Google Scholar 

  74. Al-Hamdan K. Accuracy of implant placement utilizing 3D printed and thermoplastic surgical guides: a CBCT-analysis. Biosci Biotechnol Res Commun. 2020;13(3):1210–3. https://doi.org/10.21786/bbrc/13.3/34.

    Article  Google Scholar 

  75. Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang J. 3D Printing technologies in metallic implants: a thematic review on the techniques and procedures. Int J Bioprinting. 2021;7(1):21–46. https://doi.org/10.18063/ijb.v7i1.306.

    Article  CAS  Google Scholar 

  76. Singh S, Urooj S, Batra N, Kalathil S. Healthcare applications of 3D printing in human implants: a review. In: 2020 IEEE 17th India Counc Int Conf INDICON 2020. Published online December, vol. 10. p. 2020. https://doi.org/10.1109/INDICON49873.2020.9342316.

  77. Reddy RJ, Reddy VV, Student MT, Pradesh A, Pradesh A, Pradesh A. Hip joinT CT scan data to fabrication process using 3D printing machine for demonstration of medical purpose. International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES). 2018;4(12):208–15.

    Google Scholar 

  78. Harish S, Devadath VR. Additive manufacturing and analysis of tibial insert in total knee replacement implant. Int Res J Eng Technol. 2015:2395–56. https://irjet.net/archives/V2/i4/Irjet-v2i4110.pdf. Accessed 10-01-2024

  79. Al Najjar M, Mehta SS, Monga P. Three dimensional scapular prints for evaluating glenoid morphology: an exploratory study. J Clin Orthop Trauma. 2018;9(3):230–5. https://doi.org/10.1016/j.jcot.2018.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tappa K, Jammalamadaka U, Weisman JA, et al. 3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery. J Funct Biomater. 2019;10(2) https://doi.org/10.3390/jfb10020017.

  81. Chung YJ, Park JM, Kim TH, Ahn JS, Cha HS, Lee JH. 3D printing of resin material for denture artificial teeth: chipping and indirect tensile fracture resistance. Materials (Basel). 2018;11(10):1–13. https://doi.org/10.3390/ma11101798.

    Article  CAS  Google Scholar 

  82. Assefa BG, Saastamoinen T, Pekkarinen M, et al. Realizing freeform lenses using an optics 3D-printer for industrial based tailored irradiance distribution. OSA Contin. 2019;2(3):690. https://doi.org/10.1364/osac.2.000690.

    Article  CAS  Google Scholar 

  83. Yi HG, Choi YJ, Jung JW, et al. Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty. J Tissue Eng. 2019:10. https://doi.org/10.1177/2041731418824797.

  84. Wu Y, Fuh JYH, Wong YS, Sun J. Fabrication of 3D scaffolds via E-jet printing for tendon tissue repair. Int Manuf Sci Eng Conf. 2016;2015:3–8. https://doi.org/10.1115/msec2015-9367.

    Article  Google Scholar 

  85. Xu H, Zhang D, Chen K, Zhang X. Micromotion analysis of the head-neck interface of a PEEK artificial hip prosthesis Micromotion analysis of the head-neck interface of a PEEK arti ficial hip prosthesis. Mater Res Express. 2019:6.

  86. Vasanthanathan A, Kennedy SM. Bio-printing of femur model: a bone substitute for biomedical research. Mater Tehnol. 2023;57(3):283–9. https://doi.org/10.17222/mit.2023.831.

    Article  CAS  Google Scholar 

  87. Korkmaz ME, Gupta MK, Singh G, et al. Machine learning models for online detection of wear and friction behaviour of biomedical graded stainless steel 316L under lubricating conditions. Int J Adv Manuf Technol. 2023;128(5-6):2671–88. https://doi.org/10.1007/S00170-023-12108-3/FIGURES/15.

    Article  Google Scholar 

  88. Hussain O, Saleem SS, Ahmad B. Friction and wear performance evaluation of UHMWPE using Taguchi based grey approach: a study on the influence of load and bio-serum lubrication. Mater Chem Phys. 2020;239:121918. https://doi.org/10.1016/J.MATCHEMPHYS.2019.121918.

    Article  CAS  Google Scholar 

  89. Silva A, Plaine AH. Electrochemical corrosion study of biomaterials: a bibliometric study based on co-word analysis. Results Eng. 2023;20:101489. https://doi.org/10.1016/J.RINENG.2023.101489.

    Article  CAS  Google Scholar 

  90. Welles TS, Ahn J. Driving electrochemical corrosion of implanted CoCrMo metal via oscillatory electric fields without mechanical wear. Sci Rep. 2021;11(1):1-16. doi:https://doi.org/10.1038/s41598-021-01810-5

  91. Chen IC, Su CY, Tu JJ, Kao DW, Fang HW. In vitro studies of factors affecting debridement of dental implants by tricalcium phosphate powder abrasive treatment. Sci Rep. 2023;13(1):1–10. https://doi.org/10.1038/s41598-023-35053-3.

    Article  CAS  Google Scholar 

  92. Chen CS, Chang JH, Srimaneepong V, et al. Improving the in vitro cell differentiation and in vivo osseointegration of titanium dental implant through oxygen plasma immersion ion implantation treatment. Surf Coatings Technol. 2020;399:126125. https://doi.org/10.1016/J.SURFCOAT.2020.126125.

    Article  CAS  Google Scholar 

  93. Trochim B, Borowska M, Szarmach J. Analysis of X-rays in bone remodelling around active and replace dental implants. Signal, Image Video Process. 2022;16(1):111–8. https://doi.org/10.1007/S11760-021-01971-W/TABLES/9.

    Article  Google Scholar 

  94. Khosravifard N, Saberi BV, Khosravifard A, Zakerjafari H, Vafaei R, Ghaffari ME. A diagnostic accuracy study on an innovative auto-edge detection technique for identifying simulated implant fractures on radiographic images. Sci Rep. 2022;12(1):1–9. https://doi.org/10.1038/s41598-022-24266-7.

    Article  CAS  Google Scholar 

  95. Brockett CL, Carbone S, Fisher J, Jennings LM. Influence of conformity on the wear of total knee replacement: an experimental study. Proc Inst Mech Eng Part H J Eng Med. 2018;232(2):127–34. https://doi.org/10.1177/0954411917746433.

    Article  Google Scholar 

  96. Anglin C, Wyss UP, Pichora DR. Mechanical testing of shoulder prostheses and recommendations for glenoid design. J Shoulder Elb Surg. 2000;9(4):323–31. https://doi.org/10.1067/mse.2000.105451.

    Article  CAS  Google Scholar 

  97. Senthil Maharaj PSR, Vasanthanathan A. An insight into the mechanical and tribological behavior of carbon-flax reinforced bioepoxy hybrid composite bone plates for orthopedic applications. Polym Polym Compos. 2023:31. https://doi.org/10.1177/09673911231178444/ASSET/IMAGES/LARGE/10.1177_09673911231178444-FIG8.JPEG.

  98. Chakladar ND, Harper LT, Parsons AJ. Optimisation of composite bone plates for ulnar transverse fractures Optimisation of composite bone plates for ulnar transverse fractures. J Mech Behav Biomed Mater. 2016;57(February):334–46. https://doi.org/10.1016/j.jmbbm.2016.01.029.

    Article  CAS  PubMed  Google Scholar 

  99. Mura MD, Dini G, Lanzetta M, Rossi A. An experimental analysis of laser machining for dental implants. Procedia CIRP. 2018;67:356–61. https://doi.org/10.1016/J.PROCIR.2017.12.226.

    Article  Google Scholar 

  100. Ramião NG, Martins PS, Barroso ML, Santos DC, Fernandes AA. An experimental analysis of shell failure in breast implants. J Mech Behav Biomed Mater. 2017;72(February):22–8. https://doi.org/10.1016/j.jmbbm.2017.04.005.

    Article  CAS  PubMed  Google Scholar 

  101. Kennedy SM, Amudhan K, Jeen Robert RB, Vasanthanathan A, Pandian VM, A. Experimental and finite element analysis on the effect of pores on bio-printed polycaprolactone bone scaffolds. Bioprinting. 2023;34(August):e00301. https://doi.org/10.1016/j.bprint.2023.e00301.

    Article  Google Scholar 

  102. Gulati K, Chopra D, Kocak-Oztug NA, Verron E. Fit and forget: the future of dental implant therapy via nanotechnology. Adv Drug Deliv Rev. 2023;199:114900. https://doi.org/10.1016/J.ADDR.2023.114900.

    Article  CAS  PubMed  Google Scholar 

  103. Hossain N, Islam MA, Chowdhury MA, Alam A. Advances of nanoparticles employment in dental implant applications. Appl Surf Sci Adv. 2022;12:100341. https://doi.org/10.1016/J.APSADV.2022.100341.

    Article  Google Scholar 

  104. Paxton NC, Tetsworth K, Woodruff MA. Personalization for surgical implants. Digit Hum Model Med Digit Twin. 2023;1:849–74. https://doi.org/10.1016/B978-0-12-823913-1.00019-1.

    Article  Google Scholar 

  105. Kim MK, Ham MJ, Kim WR, et al. Investigating the accuracy of mandibulectomy and reconstructive surgery using 3D customized implants and surgical guides in a rabbit model. Maxillofac Plast Reconstr Surg. 2023;45(1):1–17. https://doi.org/10.1186/S40902-023-00375-9/TABLES/5.

    Article  Google Scholar 

  106. Baumann AP, O’Neill C, Owens MC, et al. FDA public workshop: orthopaedic sensing, measuring, and advanced reporting technology (SMART) devices. J Orthop Res. 2021;39(1):22–9. https://doi.org/10.1002/JOR.24833.

    Article  PubMed  Google Scholar 

  107. Gaobotse G, Mbunge E, Batani J, Muchemwa B. The future of smart implants towards personalized and pervasive healthcare in Sub-Saharan Africa: opportunities, barriers and policy recommendations. Sensors Int. 2022;3:100173. https://doi.org/10.1016/J.SINTL.2022.100173.

    Article  Google Scholar 

  108. Drelich JW, Sikora-Jasinska M, Mostaed E, et al. Biodegradable materials for medical applications II. JOM. 2020;72(5):1830–2. https://doi.org/10.1007/S11837-020-04129-0/METRICS.

    Article  PubMed  Google Scholar 

  109. Chavda VP, Jogi G, Paiva-Santos AC, Kaushik A. Biodegradable and removable implants for controlled drug delivery and release application. Expert Opin Drug Deliv. 2022;19(10):1177–81. https://doi.org/10.1080/17425247.2022.2110065.

    Article  CAS  PubMed  Google Scholar 

  110. Li Y, Hu Y, Chen H, et al. A novel conceptual design of a biomimetic oral implant and its biomechanical effect on the repairment of a large mandibular defect. Med Nov Technol Devices. 2022;15:100147. https://doi.org/10.1016/J.MEDNTD.2022.100147.

    Article  Google Scholar 

  111. Ustunel S, Prévôt ME, Clements RJ, Hegmann E. Cradle-to-cradle: designing biomaterials to fit as truly biomimetic cell scaffolds– a review. Liq Cryst Today. 2020;29(3):40–52. https://doi.org/10.1080/1358314X.2020.1855919.

    Article  CAS  Google Scholar 

  112. Adrianto MF, Annuryanti F, Wilson CG, Sheshala R, Thakur RRS. In vitro dissolution testing models of ocular implants for posterior segment drug delivery. Drug Deliv Transl Res. 2022;12(6):1355–75. https://doi.org/10.1007/S13346-021-01043-Z/FIGURES/7.

    Article  PubMed  Google Scholar 

  113. Sekar P, S N, Desai V. Recent progress in in vivo studies and clinical applications of magnesium based biodegradable implants – a review. J Magnes Alloy. 2021;9(4):1147–63. https://doi.org/10.1016/J.JMA.2020.11.001.

    Article  CAS  Google Scholar 

  114. French D, Ofec R, Levin L. Long term clinical performance of 10 871 dental implants with up to 22 years of follow-up: a cohort study in 4247 patients. Clin Implant Dent Relat Res. 2021;23(3):289–97. https://doi.org/10.1111/CID.12994.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kohal RJ, Dennison DK. Clinical longevity of zirconia implants with the focus on biomechanical and biological outcome. Curr Oral Heal Reports. 2020;7(4):344–51. https://doi.org/10.1007/S40496-020-00289-9/TABLES/1.

    Article  Google Scholar 

  116. Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving biocompatibility for next generation of metallic implants. Prog Mater Sci. 2023;133:101053. https://doi.org/10.1016/J.PMATSCI.2022.101053.

    Article  CAS  PubMed  Google Scholar 

  117. Li H, Yao Z, Zhang J, et al. The progress on physicochemical properties and biocompatibility of tantalum-based metal bone implants. SN Appl Sci. 2020;2(4):1–14. https://doi.org/10.1007/S42452-020-2480-2/FIGURES/5.

    Article  Google Scholar 

  118. Roohani I, Newsom E, Zreiqat H. High-resolution vat-photopolymerization of personalized bioceramic implants: new advances, regulatory hurdles, and key recommendations. Int Mater Rev. 2023; https://doi.org/10.1080/09506608.2023.2194744.

  119. Favre P, Maquer G, Henderson A, Hertig D, Ciric D, Bischoff JE. In silico clinical trials in the orthopedic device industry: from fantasy to reality? Ann Biomed Eng. 2021;49(12):3213–26. https://doi.org/10.1007/S10439-021-02787-Y/FIGURES/6.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kim CS, Lunde B, MacIsaac L, et al. Provision of contraceptive implants in school-based health centers: a cost-effectiveness analysis. Contraception. 2021;103(2):107–12. https://doi.org/10.1016/J.CONTRACEPTION.2020.11.009.

    Article  PubMed  Google Scholar 

  121. Matthys C, De Vijlder W, Besseler J, Glibert M, De Bruyn H. Cost-effectiveness analysis of two attachment systems for mandibular overdenture. Clin Oral Implants Res. 2020;31(7):615–24. https://doi.org/10.1111/CLR.13599.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Amin Yavari S, Castenmiller SM, van Strijp JA, et al. Combating implant infections: shifting focus from bacteria to host. Adv Mater. 2020;32(43):2002962. https://doi.org/10.1002/ADMA.202002962.

    Article  CAS  Google Scholar 

  123. Rokhshad R, Ducret M, Chaurasia A, et al. Ethical considerations on artificial intelligence in dentistry: a framework and checklist. J Dent. 2023;135:104593. https://doi.org/10.1016/J.JDENT.2023.104593.

    Article  PubMed  Google Scholar 

  124. de Kanter AFJ, Jongsma KR, Bouten CVC, Bredenoord AL. How smart are smart materials? A conceptual and ethical analysis of smart lifelike materials for the design of regenerative valve implants. Sci Eng Ethics. 2023;29(5):1–18. https://doi.org/10.1007/S11948-023-00453-1/TABLES/3.

    Article  Google Scholar 

  125. Agbeboh NI, Oladele IO, Daramola OO, Adediran AA, Olasukanmi OO, Tanimola MO. Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon. 2020;6(4):e03765. https://doi.org/10.1016/J.HELIYON.2020.E03765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tomasi C, Derks J. Etiology, occurrence, and consequences of implant loss. Periodontol. 2000;88(1):13–35. https://doi.org/10.1111/PRD.12408.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank and acknowledge the immense support and the facilities provided by Department of Mechanical Engineering, AAA College of Engineering and Technology and Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India. The authors would also like to thank Dr. M. Sekar, Principal, AAA College of Engineering and Technology, Dr. P. Nagaraj, Senior Professor & Head, Department of Mechanical Engineering of Mepco Schlenk Engineering College, Dr. P. Seenikannan, Dean and Professor & Head, Department of Mechanical Engineering, AAA College of Engineering and Technology, and for their continuous support in writing this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Maharaj Kennedy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, S.M., Vasanthanathan, A., Jeen Robert, R. et al. Impact of mechanical engineering innovations in biomedical advancements. In vitro models 3, 5–18 (2024). https://doi.org/10.1007/s44164-024-00065-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44164-024-00065-4

Keywords

Navigation