Skip to main content
Log in

Multivariable Beurling–Lax representations: the commutative and free noncommutative settings

  • Published:
Acta Scientiarum Mathematicarum Aims and scope Submit manuscript

Abstract

The original theorem of Beurling asserts that any invariant subspace for the shift operator (multiplication by the coordinate function \( \chi(\lambda) =\lambda\)) on the Hardy space over the unit disk can be represented as an inner function times H2. We survey various approaches (including ideas and techniques from engineering systems theory and reproducing kernel Hilbert spaces) beyond Beurling’s original approach developed over the years for proving this result and then focus on understanding how these approaches can be adapted to handle the more delicate situation where the Hardy-space shift is replaced by the shift operator on a weighted Bergman space over the unit disk. We then indicate how all these results can be extended further to the setting of freely noncommutative shift-operator tuples on a weighted Bergman space in several freely noncommuting indeterminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Agler and J. E. McCarthy, Pick Interpolation for Hilbert Function Spaces, Amer. Math. Soc., Providence, 2002.

  2. J. Agler and J. E. McCarthy, Pick interpolation for free holomorphic functions, Amer. J. Math., 137 (2015), 1685–1701.

  3. J. Agler, J. E. McCarthy and N. Young, Operator Analysis: Hilbert Space Methods in Complex Analysis, Cambridge University Press, Cambridge, 2020.

  4. A. Aleman, S. Richter and C. Sundberg, Beurling’s theorem for the Bergman space, Acta Math., 177 (1996), 275–310.

  5. C.-G. Ambrozie, V. Engliš and V. Müller, Operator tuples and analytic models over general domains in \(\mathbb{C}^n\), J. Operator Theory, 47 (2002), 287–302.

  6. J. Arazy and M. Engliš, Analytic models for commuting operator tuples on bounded symmetric domains, Trans. Amer. Math. Soc., 355 (2003), 837–864.

  7. A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J. Math., 115 (2000), 205–234.

  8. W. Arveson, Subalgebras of C* algebras III: Multivariable operator theory, Acta Math., 181 (1998), 159–228.

  9. J. A. Ball, Linear systems, operator model theory and scattering: multivariable generalizations, Operator Theory and Its Applications (Winnipeg, MB, 1998), Fields Institute Communications Vol. 25, Amer. Math. Soc., Providence, 2000, pp. 151–178.

  10. J. A. Ball and V. Bolotnikov, Weighted Bergman spaces: shift-invariant subspaces and input/state/output linear systems, Integral Equations Operator Theory, 76 (2013), 301–356.

  11. J. A. Ball and V. Bolotnikov, Weighted Hardy spaces: shift invariant and coinvariant subspaces, linear systems and operator model theory, Acta Sci. Math. (Szeged), 79 (2013), 623–686.

  12. J. A. Ball and V. Bolotnikov, A Beurling type theorem in weighted Bergman spaces, C. R. Math. Acad. Sci. Paris, 351 (2013), 433–436.

  13. J. A. Ball and V. Bolotnikov, Contractive multipliers from Hardy space to weighted Hardy space, Proc. Amer. Math. Soc., 145 (2017), 2411–2425.

  14. J. A. Ball and V. Bolotnikov, Noncommutative Function-Theoretic Operator Theory and Applications, Cambridge University Press, Cambridge, 2022.

  15. J. A. Ball, V. Bolotnikov and Q. Fang, Multivariable backward-shiftinvariant subspaces and observability operators, Multidim. Syst. Signal Process., 18 (2007), 191–248.

  16. J. A. Ball, V. Bolotnikov and Q. Fang, Transfer function realization for multipliers of the Arveson space, J. Math. Anal. Appl., 333 (2007), 68–92.

  17. J. A. Ball, V. Bolotnikov and Q. Fang, Schur-class multipliers on the Arveson space: De Branges-Rovnyak reproducing kernel spaces and commutative transfer-function realizations, J. Math. Anal. Appl., 341 (2008), 519–539.

  18. J. A. Ball, V. Bolotnikov and Q. Fang, Schur-class multipliers on the Fock space: de Branges-Rovnyak reproducing kernel spaces and transfer-function realizations, Operator Theory, Structured Matrices, and Dilations: Tiberiu Constantinescu Memorial Volume, Eds.: M. Bakonyk, A. Gheondea, M. Putinar, J. Rovnyak; Theta, Bucharest, 2007, pp. 85–114.

  19. J. A.Ball and N. Cohen, De Branges–Rovnyak operator models and systems theory: a survey, Topics in Matrix and Operator Theory (Rotterdam, 1989), Birkhäuser, Basel, 1991, pp. 93-136.

  20. J. A. Ball, D. S. Kaliuzhnyi-Verbovetskyi, C. Sadosky and V. Vinnikov, Scattering systems with several evolutions and formal reproducing kernel Hilbert spaces, Complex Anal. Oper. Theory, 9 (2015), 827–931.

  21. J. A. Ball, G. Marx and V. Vinnikov, Noncommutative reproducing kernel Hilbert spaces, J. Funct. Anal., 271 (2016), 1844–1920.

  22. J. A. Ball, G. Marx and V. Vinnikov, Interpolation and transfer-function realization for the noncommutative Schur–Agler class, Oper. Theory: Adv. Appl. 262, Springer, 2018, pp. 23–116.

  23. J. A. Ball and V. Vinnikov, Formal reproducing kernel Hilbert spaces: the commutative and noncommutative settings, Reproducing Kernel Spaces and Applications, Ed.: D. Alpay, Birkhäuser, Basel, 2003,, pp. 77–134.

  24. H. Bercovici, C. Foias and C. Pearcy, Dual Algebras with Applications to Invariant Subspaces and Dilation Theory, CBMS Regional Conference Series in Mathematics 56, Amer. Math. Soc., Providence, RI, 1985.

  25. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1948), 239–255.

  26. M. Bhattacharjee, J. Eschmeier, D. K. Keshari and J. Sarkar, Dilations, wandering subspaces, and inner functions, Linear Algebra and its Applications, 523 (2017), 263–280.

  27. Y. Chen, Quasi-wandering subspaces in a class of reproducing analytic Hilbert spaces, Proc. Amer. Math. Soc., 140 (2012), 4235–4242.

  28. R. E. Curto and F.-H. Vasilescu, Standard operator models in the polydisc, Indiana Univ. J., 42 (1993), 791–810.

  29. R. E. Curto and F.-H. Vasilescu, Standard operator models in the polydisc II, Indiana Univ. J., 44 (1995), 727–746.

  30. K. Davidson and D. Pitts, Invariant subspaces and hyper-reflexivity for free semi-group algebras, Proc. London Math. Soc., 78 (1999), 401–430.

  31. K. Davidson and D. Pitts, Nevanlinna–Pick interpolation for noncommutative analytic Toeplitz algebras, Integral Equations Operator Theory, 31 (1998), 321–337.

  32. K. D. Deepak, D. K. Pradhan, J. Sarkar and D. Timotin, Commutant lifting and Nevanlinna-Pick interpolation in several variables, Integral Equations Operator Theory, 92 (2020), Paper No. 27, 15 pp.

  33. R. G. Douglas, G. Misra and J. Sarkar, Contractive Hilbert modules and their dilations, Israel J. Math., 187 (2012), 141–165.

  34. R. G. Douglas and J. Sarkar, On unitarily equivalent submodules, Ind. U. Math. J., 57 (2008), 2729–2743.

  35. G. Dullerud, F. Paganini, A Course in Robust Control Theory: A Convex Approach, Springer-Verlag, New York, 2000.

  36. P. Duren, D. Khavinson, H. Shapiro and C. Sundberg, Contractive zero-divisors in Bergman spaces, Pacific J. Math., 157 (1993), 37–56.

  37. P. Duren, D. Khavinson, H. Shapiro and C. Sundberg, Invariant subspaces in Bergman spaces and the biharmonic equation, Michigan Math. J., 41 (1994), 247–259.

  38. J. Eschmeier, Bergman inner functions and m-hypercontractions, J. Funct. Anal., 275 (2018), 73–102.

  39. S. Gorai and J. Sarkar, Contractively embedded invariant subspaces, Interpolation and Realization Theory with Applications to Control Theory, Oper. Theory Adv. Appl. 272, Eds.: V. Bolotnikov, S. terHorst, A.C.M. Ran, V. Vinnikov, Birkhäuser/Springer, Cham, 2019, pp. 117–131.

  40. P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math., 208 (1961), 102–112.

  41. H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. Reine Angew. Math., 422 (1991), 45–68.

  42. H. Hedenmalm, A factoring theorem for a weighted Bergman space, Algebra i Analiz, 4 (1992), 167–176; translation: St. Petersburg Math. J., 4 (1993), 163–174.

  43. H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Springer, Berlin, 2000.

  44. H. Helson and D. Lowdenslager, Invariant Subspaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Academic Press, Pergamon, Oxford, 251– 262.

  45. J. W. Helton, Passive network realization using abstract operator theory, IEEE Trans. Circuit Theory, 19 (1972), 518–520.

  46. J. W. Helton, Discrete time systems, operator models, and scattering theory, J. Funct. Anal., 16 (1974), 15–38.

  47. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.

  48. K. J. Izuchi, K. H. Izuchi and Y. Izuchi, Wandering subspaces and the Beurling type Theorem I, Arch. Math., 95 (2010), 439–446.

  49. K. J. Izuchi, K. H. Izuchi and Y. Izuchi, Quasi-wandering subspaces in the Bergman space, Integral Equations Operator Theory, 67 (2010), 151–161.

  50. P. E. T. Jorgensen and J. Tian, Reproducing kernels and choices of associated feature spaces in the form of L2, J. Math. Ann. Appl., 505 (2022), 125535.

  51. M. T. Jury and R. T. W. Martin, Non-commutative Clark theory for the free and abelian Toeplitz algebras, J. Math. Anal. Appl., 456 (2017), 1062–1100.

  52. M. T. Jury and R. T. W. Martin, Aleksandrov–Clark theory for Drury– Arveson space, Integral Equations Operator Theory, 90 (2018), Paper No. 45, 42 pp.

  53. M. T. Jury and R. T. W. Martin and E. Shamovich, Noncommutative rational functions in the full Fock space, Trans. Amer. Math. Soc., 374 (2021), 6727–6749.

  54. M. T. Jury, R. T. W. Martin and E. Shamovich, Blaschke-singular-outer free factorization of free non-commutative functions, Adv. Math., 384 (2021), Paper No. 107720, 42 pp.

  55. D. Kaliuzhnyi-Verbovetskyi and V. Vinnikov, Foundations of Free Noncommutative Function Theory, Amer. Math. Soc., Providence, 2014.

  56. P. D. Lax, Translation invariant spaces, Acta Math., 101 (1959), 161–178.

  57. R. T. W. Martin and E. Shamovich, A de Branges-Beurling theorem for the full Fock space, J. Math. Anal. Appl., 496 (2021), 124765.

  58. S. McCullough and T. T. Trent, Invariant subspaces and Nevanlinna-Pick kernels, J. Funct. Anal., 178 (2000), 226–249.

  59. E.-H. Moore, General Analysis 2, Vol. 1, 1939.

  60. V. Müller, Models for operators using weighted shifts, J. Operator Theory, 20 (1988), 3–20.

  61. V. Müller and F.-H. Vasilescu, Standard models for some commuting multioperators, Proc. Amer. Math. Soc., 117 (1993), 979–989.

  62. A. Olofsson, A characteristic operator function for the class of n hypercontractions, J. Funct. Anal., 236 (2006), 517–545.

  63. A. Olofsson, An operator-valued Berezin transform and the class of n hypercontractions, Integral Equations Operator Theory, 58 (2007), 503–549.

  64. A. Olofsson, Operator-valued Bergman inner functions as transfer functions, Algebra i Analiz, 19 (2007), 146–173.

  65. V. I. Paulsen and M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, Cambridge University Press, Cambridge, 2016.

  66. G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory, 22 (1989), 51–71.

  67. G. Popescu, Multi-analytic operators and some factorization theorems, Indiana U. Math. J., 38 (1989), 693–710.

  68. G. Popescu, Free holomorphic functions on the unit ball of \(B(\mathcal{H})^n\), J. Funct. Anal., 241 (2006), 268–333.

  69. G. Popescu, Operator theory on noncommutative domains, Memoirs of the Amer. Math. Soc. 205, Amer. Math. Soc., 2010, no. 964.

  70. G. Popescu, Berezin transforms on noncommutative varieties in polydomains, J. Funct. Anal., 265 (2013), 2500–2552.

  71. G. Popescu, Berezin transforms on noncommutative polydomains, Trans. Amer. Math. Soc., 368 (2016), 4375–4416.

  72. G. Popescu, Invariant subspaces and operator model theory on noncommutative varieties, Math. Ann., 372 (2018), 611–650.

  73. M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford University Press, New York, 1985.

  74. G. Salomon, O. M. Shalit and E. Shamovich, Algebras of bounded non-commutative analytic functions on subvarieties of the noncommutative unit ball, Trans. Amer. Math. Soc., 370 (2018), 8639–8690.

  75. J. Sarkar, An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces I, J. Operator Theory, 73 (2015), 433–441.

  76. J. Sarkar, An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces II, Complex Anal. Oper. Theory (2016), 769– 782.

  77. A. L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory, Math. Surveys 13, Amer. Math. Soc., Providence, RI, 1974, pp. 49–128.

  78. S. Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries, J. Reine Angew. Math., 531 (2001), 147–189.

  79. S. Shimorin, On Beurling-type theorems in weighted \(\ell^2\) and Bergman spaces, Proc. Amer. Math. Soc., 131 (2003), 1777–1787.

  80. B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kércy, Harmonic Analysis of Operators on Hilbert Space, Second edition, Revised and enlarged edition, Universitext, Springer, New York, 2010.

  81. F.-H. Vasilescu, An perator-valued Poisson kernel, J. Funct. Anal., 110 (1992), 47–72.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Ball.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, J.A., Bolotnikov, V. Multivariable Beurling–Lax representations: the commutative and free noncommutative settings. Acta Sci. Math. (Szeged) 88, 5–52 (2022). https://doi.org/10.1007/s44146-022-00010-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44146-022-00010-5

Key words and phrases

AMS Subject Classification

Navigation