Skip to main content
Log in

Riesz bases of exponentials for multi-tiling measures

  • Original Article
  • Published:
Sampling Theory, Signal Processing, and Data Analysis Aims and scope Submit manuscript

Abstract

Let G be a closed subgroup of \({\mathbb {R}}^d\) and let \(\nu \) be a Borel probability measure admitting a Riesz basis of exponentials with frequency sets in the dual group \(G^{\perp }\). We form a multi-tiling measure \(\mu = \mu _1+\cdots +\mu _N\) where \(\mu _i\) is translationally equivalent to \(\nu \) and different \(\mu _i\) and \(\mu _j\) have essentially disjoint support. We obtain some necessary and sufficient conditions for \(\mu \) to admit a Riesz basis of exponentials . As an application, the square boundary, after a rotation, is a union of two fundamental domains of \(G = {\mathbb {Z}}\times {\mathbb {R}}\) and can be regarded as a multi-tiling measure. We show that, unfortunately, the square boundary does not admit a Riesz basis of exponentials of the form as a union of translate of discrete subgroups \({\mathbb {Z}}\times \{0\}\). This rules out a natural candidate of potential Riesz basis for the square boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, p. 440. Birkhäuser Boston Inc., Boston (2003). https://doi.org/10.1007/978-0-8176-8224-8

    Book  Google Scholar 

  2. Heil, C.: A Basis Theory Primer, Expanded edn. Applied and Numerical Harmonic Analysis, p. 534. Springer, New York (2011). https://doi.org/10.1007/978-0-8176-4687-5

    Book  Google Scholar 

  3. Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16(1), 101–121 (1974). https://doi.org/10.1016/0022-1236(74)90072-X

    Article  MathSciNet  Google Scholar 

  4. Tao, T.: Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11(2–3), 251–258 (2004). https://doi.org/10.4310/MRL.2004.v11.n2.a8

    Article  MathSciNet  Google Scholar 

  5. Kolountzakis, M.N., Matolcsi, M.: Tiles with no spectra. Forum Math. 18(3), 519–528 (2006). https://doi.org/10.1515/FORUM.2006.026

    Article  MathSciNet  Google Scholar 

  6. Iosevich, A.: Fuglede’s conjecture for lattices

  7. Lev, N., Matolcsi, M.: The Fuglede conjecture for convex domains is true in all dimensions. Acta Math. 228(2), 385–420 (2022). https://doi.org/10.4310/acta.2022.v228.n2.a3

    Article  MathSciNet  Google Scholar 

  8. Kolountzakis, M.N.: Multiple lattice tiles and Riesz bases of exponentials. Proc. Am. Math. Soc. 143(2), 741–747 (2015). https://doi.org/10.1090/S0002-9939-2014-12310-0

    Article  MathSciNet  Google Scholar 

  9. Grepstad, S., Lev, N.: Multi-tiling and Riesz bases. Adv. Math. 252, 1–6 (2014). https://doi.org/10.1016/j.aim.2013.10.019

    Article  MathSciNet  Google Scholar 

  10. Agora, E., Antezana, J., Cabrelli, C.: Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups. Adv. Math. 285, 454–477 (2015). https://doi.org/10.1016/j.aim.2015.08.006

    Article  MathSciNet  Google Scholar 

  11. Cabrelli, C., Carbajal, D.: Riesz bases of exponentials on unbounded multi-tiles. Proc. Am. Math. Soc. 146(5), 1991–2004 (2018). https://doi.org/10.1090/proc/13980

    Article  MathSciNet  Google Scholar 

  12. Cabrelli, C., Hare, K.E., Molter, U.: Riesz bases of exponentials and the Bohr topology. Proc. Am. Math. Soc. 149(5), 2121–2131 (2021). https://doi.org/10.1090/proc/15395

    Article  MathSciNet  Google Scholar 

  13. Jorgensen, P.E.T., Pedersen, S.: Dense analytic subspaces in fractal \(L^2\)-spaces. J. Anal. Math. 75, 185–228 (1998). https://doi.org/10.1007/BF02788699

    Article  MathSciNet  Google Scholar 

  14. Dutkay, D.E., Lai, C.-K., Wang, Y.: Fourier bases and Fourier frames on self-affine measures. In: Recent Developments in Fractals and Related Fields. Trends in Mathematics, pp. 87–111. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57805-7_5

    Chapter  Google Scholar 

  15. Gabardo, J.-P., Lai, C.-K.: Spectral measures associated with the factorization of the Lebesgue measure on a set via convolution. J. Fourier Anal. Appl. 20(3), 453–475 (2014). https://doi.org/10.1007/s00041-014-9329-2

    Article  MathSciNet  Google Scholar 

  16. Lev, N.: Fourier frames for singular measures and pure type phenomena. Proc. Am. Math. Soc. 146(7), 2883–2896 (2018). https://doi.org/10.1090/proc/13849

    Article  MathSciNet  Google Scholar 

  17. Iosevich, A., Lai, C.-K., Liu, B., Wyman, E.: Fourier frames for surface-carried measures. Int. Math. Res. Not. 3, 1644–1665 (2022). https://doi.org/10.1093/imrn/rnz318

    Article  MathSciNet  Google Scholar 

  18. Lai, C.-K., Liu, B., Prince, H.: Spectral properties of some unions of linear spaces. J. Funct. Anal. 280(11), 108985 (2021). https://doi.org/10.1016/j.jfa.2021.108985

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Kit Lai.

Additional information

Communicated by Azita Mayeli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, CK., Sheynis, A. Riesz bases of exponentials for multi-tiling measures. Sampl. Theory Signal Process. Data Anal. 21, 29 (2023). https://doi.org/10.1007/s43670-023-00068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43670-023-00068-4

Keywords

Mathematics Subject Classification

Navigation