Skip to main content

Advertisement

Log in

α2,3-Sialylation with Fucosylation Associated with More Severe Anti-MDA5 Positive Dermatomyositis Induced by Rapidly Progressive Interstitial Lung Disease

  • Article
  • Published:
Phenomics Aims and scope Submit manuscript

Abstract

Dermatomyositis (DM) is a heterogeneous autoimmune disease associated with numerous myositis specific antibodies (MSAs) in which DM with anti-melanoma differentiation-associated gene 5-positive (MDA5 + DM) is a unique subtype of DM with higher risk of developing varying degrees of Interstitial lung disease (ILD). Glycosylation is a complex posttranslational modification of proteins associated with many autoimmune diseases. However, the association of total plasma N-glycome (TPNG) and DM, especially MDA5 + DM, is still unknown. TPNG of 94 DM patients and 168 controls were analyzed by mass spectrometry with in-house reliable quantitative method called Bionic Glycome method. Logistic regression with age and sex adjusted was used to reveal the aberrant glycosylation of DM and the association of TPNG and MDA5 + DM with or without rapidly progressive ILD (RPILD). The elastic net model was used to evaluate performance of glycans in distinguishing RPLID from non-RPILD, and survival analysis was analyzed with N-glycoslyation score by Kaplan–Meier survival analysis. It was found that the plasma protein N-glycome in DM showed higher fucosylation and bisection, lower sialylation (α2,3- not α2,6-linked) and galactosylation than controls. In MDA5 + DM, more severe disease condition was associated with decreased sialylation (specifically α2,3-sialylation with fucosylation) while accompanying elevated H6N5S3 and H5N4FSx, decreased galactosylation and increased fucosylation and the complexity of N-glycans. Moreover, glycosylation traits have better discrimination ability to distinguish RPILD from non-RPILD with AUC 0.922 than clinical features and is MDA5-independent. Survival advantage accrued to MDA5 + DM with lower N-glycosylation score (p = 3e-04). Our study reveals the aberrant glycosylation of DM for the first time and indicated that glycosylation is associated with disease severity caused by ILD in MDA5 + DM, which might be considered as the potential biomarker for early diagnosis of RPILD and survival evaluation of MDA5 + DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The main data supporting the findings of this study are available within the manuscript and its Supplementary materials. All data generated, including both raw images and analyzed datasets for the figures in this study, are available upon request from the corresponding author.

Abbreviations

DM:

Dermatomyositis

MSAs:

Myositis specific antibodies

MDA5 + DM:

DM with anti-melanoma differentiation-associated gene 5-positive

ILD:

Interstitial lung disease

TPNG:

Total plasma N-glycome

RPILD:

Rapidly progressive interstitial lung disease

SLE:

Systemic lupus erythematosus

RA:

Rheumatoid arthritis

IBD:

Inflammatory bowel disease

MALDI-TOF-MS:

Matrix assisted laser desorption/ionization time of flight mass spectrometry

ASS:

Anti-synthetase syndrome

Anti-ARSs:

Anti-synthetases antibodies

HRCT:

High-resolution computed tomography

PaO2 :

Partial pressure of arterial oxygen

SD:

Standard deviation

ROC:

Receiver operating characteristic curves

A:

Antennae

S:

Sialylation

F:

Fucosylation

B:

Bisection

G:

Galactosylation

TM:

High-mannose glycan types

THy:

Hybrid glycan types

TC:

Complex glycan types

AUC:

Area under curve

SA:

Sialic acid

HC:

Healthy controls

NK:

Natural killer

References

  • Bohan A, Peter JB (1975) Polymyositis and dermatomyositis (second of two parts). N Engl J Med 292(8):403–407. https://doi.org/10.1056/nejm197502202920807

    Article  CAS  PubMed  Google Scholar 

  • Cavagna L, Trallero-Araguás E, Meloni F, Cavazzana I, Rojas-Serrano J, Feist E, Zanframundo G, Morandi V, Meyer A, da PereiraSilva JA, Matos Costa CJ, Molberg O, Andersson H, Codullo V, Mosca M, Barsotti S, Neri R, Scirè C, Govoni M, Furini F, Lopez-Longo FJ, Martinez-Barrio J, Schneider U, Lorenz HM, Doria A, Ghirardello A, Ortego-Centeno N, Confalonieri M, Tomietto P, Pipitone N, Rodriguez Cambron AB, Blázquez Cañamero M, Voll RE, Wendel S, Scarpato S, Maurier F, Limonta M, Colombelli P, Giannini M, Geny B, Arrigoni E, Bravi E, Migliorini P, Mathieu A, Piga M, Drott U, Delbrueck C, Bauhammer J, Cagnotto G, Vancheri C, Sambataro G, De Langhe E, Sainaghi PP, Monti C, Gigli Berzolari F, Romano M, Bonella F, Specker C, Schwarting A, Villa Blanco I, Selmi C, Ceribelli A, Nuno L, Mera-Varela A, Perez Gomez N, Fusaro E, Parisi S, Sinigaglia L, Del Papa N, Benucci M, Cimmino MA, Riccieri V, Conti F, Sebastiani GD, Iuliano A, Emmi G, Cammelli D, Sebastiani M, Manfredi A, Bachiller-Corral J, Sifuentes Giraldo WA, Paolazzi G, Saketkoo LA, Giorgi R, Salaffi F, Cifrian J, Caporali R, Locatelli F, Marchioni E, Pesci A, Dei G, Pozzi MR, Claudia L, Distler J, Knitza J, Schett G, Iannone F, Fornaro M, Franceschini F, Quartuccio L, Gerli R, Bartoloni E, Bellando Randone S, Zampogna G, Gonzalez Perez MI, Mejia M, Vicente E, Triantafyllias K, Lopez-Mejias R, Matucci-Cerinic M, Selva-O’Callaghan A, Castañeda S, Montecucco C, Gonzalez-Gay MA (2019) Influence of antisynthetase antibodies specificities on antisynthetase syndrome clinical spectrum time course. J Clin Med. https://doi.org/10.3390/jcm8112013

    Article  PubMed  PubMed Central  Google Scholar 

  • Clerc F, Reiding KR, Jansen BC, Kammeijer GS, Bondt A, Wuhrer M (2016) Human plasma protein N-glycosylation. Glycoconj J 33(3):309–343. https://doi.org/10.1007/s10719-015-9626-2

    Article  CAS  PubMed  Google Scholar 

  • Clerc F, Novokmet M, Dotz V, Reiding KR, de Haan N, Kammeijer GSM, Dalebout H, Bladergroen MR, Vukovic F, Rapp E, Targan SR, Barron G, Manetti N, Latiano A, McGovern DPB, Annese V, Lauc G, Wuhrer M (2018) Plasma N-glycan signatures are associated with features of inflammatory bowel diseases. Gastroenterology 155(3):829–843. https://doi.org/10.1053/j.gastro.2018.05.030

    Article  CAS  PubMed  Google Scholar 

  • Cvetko A, Kifer D, Gornik O, Klarić L, Visser E, Lauc G, Wilson JF, Štambuk T (2020) Glycosylation alterations in multiple sclerosis show increased proinflammatory potential. Biomedicines 8(10):410. https://doi.org/10.3390/biomedicines8100410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWane ME, Waldman R, Lu J (2020) Dermatomyositis: clinical features and pathogenesis. J Am Acad Dermatol 82(2):267–281. https://doi.org/10.1016/j.jaad.2019.06.1309

    Article  CAS  PubMed  Google Scholar 

  • Dotz V, Lemmers RFH, Reiding KR, Hipgrave Ederveen AL, Lieverse AG, Mulder MT, Sijbrands EJG, Wuhrer M, Van Hoek M (2018) Plasma protein N-glycan signatures of type 2 diabetes. Biochim Biophys Acta Gen Subj 1862(12):2613–2622. https://doi.org/10.1016/j.bbagen.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  • Ereño-Orbea J, Sicard T, Cui H, Mazhab-Jafari MT, Benlekbir S, Guarné A, Rubinstein JL, Julien JP (2017) Molecular basis of human CD22 function and therapeutic targeting. Nat Commun 8(1):764. https://doi.org/10.1038/s41467-017-00836-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1):118–127. https://doi.org/10.1093/biostatistics/kxj037

    Article  PubMed  Google Scholar 

  • Kurimoto A, Kitazume S, Kizuka Y, Nakajima K, Oka R, Fujinawa R, Korekane H, Yamaguchi Y, Wada Y, Taniguchi N (2014) The absence of core fucose up-regulates GnT-III and Wnt target genes: a possible mechanism for an adaptive response in terms of glycan function. J Biol Chem 289(17):11704–11714. https://doi.org/10.1074/jbc.M113.502542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1(3):237–243. https://doi.org/10.1038/nm0395-237

    Article  CAS  PubMed  Google Scholar 

  • Mammen AL, Allenbach Y, Stenzel W, Benveniste O (2020) 239th ENMC international workshop: classification of dermatomyositis, Amsterdam, the Netherlands, 14–16 December 2018. Neuromuscul Disord 30(1):70–92. https://doi.org/10.1016/j.nmd.2019.10.005

    Article  PubMed  Google Scholar 

  • Martin TC, Šimurina M, Ząbczyńska M, Martinic Kavur M, Rydlewska M, Pezer M, Kozłowska K, Burri A, Vilaj M, Turek-Jabrocka R, Krnjajić-Tadijanović M, Trofimiuk-Müldner M, Ugrina I, Lityńska A, Hubalewska-Dydejczyk A, Trbojevic-Akmacic I, Lim EM, Walsh JP, Pocheć E, Spector TD, Wilson SG, Lauc G (2020) Decreased immunoglobulin G core fucosylation, a player in antibody-dependent cell-mediated cytotoxicity, is associated with autoimmune thyroid diseases. Mol Cell Proteomics 19(5):774–792. https://doi.org/10.1074/mcp.RA119.001860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsusaka K, Fujiwara Y, Pan C, Esumi S, Saito Y, Bi J, Nakamura Y, Mukunoki A, Takeo T, Nakagata N, Yoshii D, Fukuda R, Nagasaki T, Tanaka R, Komori H, Maeda H, Watanabe H, Tamada K, Komohara Y, Maruyama T (2021) α(1)-acid glycoprotein enhances the immunosuppressive and protumor functions of tumor-associated macrophages. Cancer Res 81(17):4545–4559. https://doi.org/10.1158/0008-5472.Can-20-3471

    Article  CAS  PubMed  Google Scholar 

  • Moghadam-Kia S, Oddis CV, Sato S, Kuwana M, Aggarwal R (2016) Anti-melanoma differentiation-associated gene 5 is associated with rapidly progressive lung disease and poor survival in US patients with amyopathic and myopathic dermatomyositis. Arthritis Care Res 68(5):689–694. https://doi.org/10.1002/acr.22728

    Article  CAS  Google Scholar 

  • Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462. https://doi.org/10.1038/nrm3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novokmet M, Lukić E, Vučković F, Ðurić Ž, Keser T, Rajšl K, Remondini D, Castellani G, Gašparović H, Gornik O, Lauc G (2014) Changes in IgG and total plasma protein glycomes in acute systemic inflammation. Sci Rep 4:4347. https://doi.org/10.1038/srep04347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagan JD, Kitaoka M, Anthony RM (2018) Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 172(3):564-577.e513. https://doi.org/10.1016/j.cell.2017.11.041

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Zhang L, Zhang R, Han J, Qin W, Gu Y, Sha J, Xu X, Feng Y, Ren Z, Dai J, Huang B, Ren S, Gu J (2021) Screening and diagnosis of colorectal cancer and advanced adenoma by Bionic Glycome method and machine learning. Am J Cancer Res 11(6):3002–3020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavić T, Dilber D, Kifer D, Selak N, Keser T, Ljubičić Đ, Vukić Dugac A, Lauc G, Rumora L, Gornik O (2018) N-glycosylation patterns of plasma proteins and immunoglobulin G in chronic obstructive pulmonary disease. J Transl Med 16(1):323. https://doi.org/10.1186/s12967-018-1695-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Zhang Z, Qin R, Han J, Zhao R, Gu Y, Pan Y, Gu J, Ren S (2019) Providing bionic glycome as internal standards by glycan reducing and isotope labeling for reliable and simple quantitation of N-glycome based on MALDI- MS. Anal Chim Acta 1081:112–119. https://doi.org/10.1016/j.aca.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Hirakata M, Kuwana M, Suwa A, Inada S, Mimori T, Nishikawa T, Oddis CV, Ikeda Y (2005) Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum 52(5):1571–1576. https://doi.org/10.1002/art.21023

    Article  CAS  PubMed  Google Scholar 

  • Shirakashi M, Nakashima R, Tsuji H, Tanizawa K, Handa T, Hosono Y, Akizuki S, Murakami K, Hashimoto M, Yoshifuji H, Ohmura K, Mimori T (2020) Efficacy of plasma exchange in anti-MDA5-positive dermatomyositis with interstitial lung disease under combined immunosuppressive treatment. Rheumatology 59(11):3284–3292. https://doi.org/10.1093/rheumatology/keaa123

    Article  CAS  PubMed  Google Scholar 

  • Tokiyama K, Tagawa H, Yokota E, Nagasawa K, Kusaba T, Tsuda Y, Niho Y (1990) Two cases of amyopathic dermatomyositis with fatal rapidly progressive interstitial pneumonitis. Ryumachi 30(3):204–209 (Discussion 209–211)

    CAS  PubMed  Google Scholar 

  • Tsuchiya N, Endo T, Matsuta K, Yoshinoya S, Aikawa T, Kosuge E, Takeuchi F, Miyamoto T, Kobata A (1989) Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. J Rheumatol 16(3):285–290

    CAS  PubMed  Google Scholar 

  • Varki A, Gagneux P (2012) Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci 1253(1):16–36. https://doi.org/10.1111/j.1749-6632.2012.06517.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vreeker GCM, Nicolardi S, Bladergroen MR, van der Plas CJ, Mesker WE, Tollenaar R, van der Burgt YEM, Wuhrer M (2018) Automated plasma glycomics with linkage-specific sialic acid esterification and ultrahigh resolution MS. Anal Chem 90(20):11955–11961. https://doi.org/10.1021/acs.analchem.8b02391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vučković F, Krištić J, Gudelj I, Teruel M, Keser T, Pezer M, Pučić-Baković M, Štambuk J, Trbojević-Akmačić I, Barrios C, Pavić T, Menni C, Wang Y, Zhou Y, Cui L, Song H, Zeng Q, Guo X, Pons-Estel BA, McKeigue P, Leslie Patrick A, Gornik O, Spector TD, Harjaček M, Alarcon-Riquelme M, Molokhia M, Wang W, Lauc G (2015) Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol 67(11):2978–2989. https://doi.org/10.1002/art.39273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wuhrer M, Holst S (2018) Serum sialylation changes in cancer. Glycoconj J 35(2):139–160. https://doi.org/10.1007/s10719-018-9820-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The National Key R&D Program of China (2022YFC3400803), the National Natural Science Foundation of China (32071276), Greater Bay Area Institute of Precision Medicine (IPM2021C005), and National Postdoctoral Program for Innovative Talents (BX20190076).

Author information

Authors and Affiliations

Authors

Contributions

RRZ, LG: carried out the experiments, analysis, interpretation of data and drafted the manuscript. JCS, SWC, JFZ, KWW, JCW: participated in the collection of clinical data. JXG, JL and SFR: conceived the project and revised the intellectual content. All authors contributed to revise the manuscript critically for important intellectual content. All authors read and approved the final manuscript. All authors contributed to drafting the article and revising it critically for important intellectual content. All authors approved the version of the article to be published.

Corresponding authors

Correspondence to Jianxin Gu, Jing Liu or Shifang Ren.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of Interest.

Ethical Approval

This study was approved by Research Ethics Committee of Renji Hospital (ID: IRB #2016-075), Shanghai, China.

Consent to Participate

Written informed consent was obtained from the individual recruited patients of the current study.

Consent for Publication

All the participants approved to publish.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1140 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Guo, L., Sha, J. et al. α2,3-Sialylation with Fucosylation Associated with More Severe Anti-MDA5 Positive Dermatomyositis Induced by Rapidly Progressive Interstitial Lung Disease. Phenomics 3, 457–468 (2023). https://doi.org/10.1007/s43657-023-00096-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43657-023-00096-z

Keywords

Navigation