Skip to main content
Log in

Bi-coloured enhanced luminescence imaging by targeted switch on/off laser MEF coupling for synthetic biosensing of nanostructured human serum albumin

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this communication luminescent bioconjugated human serum albumin nanostructures (HSA NPs) with tiny ultraluminescent gold core–shell silica nanoparticles (Au@SiO2-Fl) were designed with enhanced bi-coloured luminescence properties. The HSA NPs were obtained from Human Serum Albumin free (HSA free) through the desolvation method, and Au@SiO2-Fl, through modified Turkevich and Störber methods. In this manner, porous HSA Nanostructures of 150.0–200 nm and Au@SiO2-Fl 45.0 nm final diameters were obtained. Both methodologies and structures were conjugated to obtain modified Nanocomposites based on tiny gold cores of 15 nm surrounded with well spatial Nanostructured architectures of HSA (d15 Au@SiO2-Fl-HSA) that generated variable nanopatterns depending on the modified methodology of synthesis applied within colloidal dispersions. Therefore, three methodologies of non-covalent conjugation were developed. In optimal conditions, through Transmission Electronic Microscopy (TEM), well resolved multilayered nano-architectures with a size 190.0–200 nm in average with variable contrast depending of the focused nanomaterial within the nanocomposite were shown. Optimized nanoarchitecture was based on a template tiny gold core–shell surrounded by nanostructured HSA NPs (d15 Au@SiO2-Fl-HSA). In this manner, the NanoImaging generated by laser fluorescence microscopy permitted to record improved optical properties and functionalities, such as: (i) enhanced ultraluminescent d15 Au@SiO2-Fl-HSA composites in comparison to individual components based on Metal Enhanced Fluorescence (MEF); (ii) diminished photobleaching; (iii) higher dispersibility; (iv) higher resolution of single bright nano-emitters of 210.0 nm sizes; and (v) enhanced bi-coloured Bio-MEF coupling with potential non-classical light delivery towards other non-optical active biostructures for varied applications. The characterization of these nanocomposites allowed the comparison, evaluation and discussion focused on new properties generated and functionalities based on the incorporation of different types of tuneable materials. In this context, the biocompatibility, Cargo confined spaces, protein-based materials, optical transparent could be highlighted, as well as optical active materials. Thus, the potential applications of nanotechnology to both nanomedicine and nano-pharmaceutics were discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 3
Fig. 14
Scheme 4

Similar content being viewed by others

Data availability

Requests for any data or additional information should be emailed to correspondent author A. G. B.

References

  1. Guillermo Bracamonte, A. (2022). Gold nanoparticles chemical surface modifications as versatile nanoplatform strategy for fundamental research towards nanotechnology and further applications. Nanoscience and Nanotechnology: Open Access, 1, 1004.

    Google Scholar 

  2. Guillermo Bracamonte, A., Chapter 28, Design of new high energy near Field Nanophotonic materials for far Field applications. DOI: https://doi.org/10.1007/978-3-030-94319-6_28. Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, Part of the Springer Book series: Engineering Materials, ISBN 9783030943189; ISBN 978–3–030–94319–6 (eBook); DOI : https://doi.org/10.1007/978-3-030-94319-6; Series ISSN 1612–1317, ISSN 1868–1212 (electronic); Springer Nature, Switzerland (2022) 859–920.

  3. Biswas, S., & Torchilin, V. P. (2014). Nanopreparations for organelle-specific delivery in cancer. Advanced Drug Delivery Reviews, 66, 26–41.

    CAS  PubMed  Google Scholar 

  4. Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., & Libchaber, A. (2002). In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298, 1759–1762.

    CAS  PubMed  Google Scholar 

  5. Martin Ame, S. A., Serea, A., Shalan, A. G., & Bracamonte,. (2021). Detection of viruses and development of new treatments: Insights into antibody-antigen interactions and multifunctional lab-on-particle for SARS CoV-2. Journal of Nanotechnol Nanomaterials, Scientific Archives (Creative Commons Attribution License), 2(2), 67–75.

    Google Scholar 

  6. Dufour, S., & De Koninck, Y. (2015). Optrodes for combined optogenetics and electrophysiology in live animals. Neurophotonics, 2(3), 031205.

    PubMed  PubMed Central  Google Scholar 

  7. Rioux, M., Gontero, D., Veglia, A. V., Guillermo Bracamonte, A., & Boudreau, D. (2017). Synthesis of ultraluminiscent gold core–shell nanoparticles as nanoimaging platforms for biosensing applications based on metal enhanced fluorescence. RSC Advances, 7, 10252–10258.

    Google Scholar 

  8. Asselin, J., Legros, P., Grégoire, A., & Boudreau, D. (2016). Correlating metal-enhanced fluorescence and structural properties in Ag@SiO2 core–shell nanoparticles. Plasmonics. https://doi.org/10.1007/s11468-016-0186-5

    Article  Google Scholar 

  9. West, J. L., & Halas, N. J. (2003). Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annual Review of Biomedical Engineering, 5, 285–292.

    CAS  PubMed  Google Scholar 

  10. Gontero, D., Veglia, A. V., Boudreau, D., & Bracamonte, A. G. (2018). Ultraluminescent gold Core@shell nanoparticles applied to individual bacterial detection based on metal-enhanced fluorescence nanoimaging. Journal of Nanophotonics, 12(1), 012505.

    Google Scholar 

  11. Brouard, D., Lessard Viger, M., Bracamonte, A. G., & Boudreau, D. (2011). Label-free biosensing based on multilayer fluorescent nanocomposites and a cationic polymeric transducer. ACS Nano, 5, 1888–1896.

    CAS  PubMed  Google Scholar 

  12. Lu, L., Duong, V. T., Shalash, A. O., Skwarczynski, M., & Toth, I. (2021). Chemical conjugation strategies for the development of protein-based subunit nanovaccines. Vaccines, 9, 563.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Valdes-Balbin, Y., Santana-Mederos, D., Quintero, L., Garcia-Rivera, D., & Verez Bencomo, V. (2021). SARS-CoV-2 RBD-tetanus toxoid conjugate vaccine induces a strong neutralizing immunity in preclinical studies. ACS Chemical Biology, 16(7), 1223–1233.

    CAS  PubMed  Google Scholar 

  14. Gomez, L. R., Palacios, S. M., Tettamanti, C., Daniela Quinteros, A., & Bracamonte, G. (2021). Nano-chemistry and bio-conjugation with perspectives on the design of nano-immune platforms, vaccines and new combinatorial treatments. Journal of Vaccines and Immunology, 7(1), 049–056.

    Google Scholar 

  15. Veglia, A. V., & Bracamonte, A. G. (2018). Metal enhanced fluorescence emission and quenching protection effect with a host-guest nanophotonic-supramolecular structure. Journal of Nanophotonics, Special Section on Nanoscience and Biomaterials in Photonics, 12(3), 033004.

    Google Scholar 

  16. Graf, C., Vossen, D. L. J., Imhof, A., & van Blaaderen, A. (2003). A general method to coat colloidal particles with silica. Langmuir, 19, 6693–6700.

    CAS  Google Scholar 

  17. Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., & Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. The Analyst, 139, 4855.

    CAS  PubMed  Google Scholar 

  18. Martinez, S. M., Inda, A., Garcia, A. M., Bermúdez, J. M., Gonzo, E. E., Herrero-Vanrell, R., Luna, J. D., Allemandi, D. A., & Quinteros, D. A. (2022). Development of melatonin-loaded, human-serum-albumin nanoparticles formulations using different methods of preparation for ophthalmic administration. International Journal of Pharmaceutics, 628, 122308.

    Google Scholar 

  19. Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., & Plech, A. (2006). Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry B, 110, 15700–15707.

    CAS  PubMed  Google Scholar 

  20. In den Kirschen, O. W., Hutchinson, W., & Guillermo Bracamonte, A. (2021). Conjugation reactions of hybrid organosilanes for nanoparticles and surface modifications. Journal of Chemical Research of Advance (JCRA), 2(1), 6–15.

    CAS  Google Scholar 

  21. Geddeds C. D. (eds) Metal enhanced fluorescence Book, Copyright© 2010 by John Wiley & Sons. Ine. Ali rights reserved, Published by John Wiley & Sons. Ine Hobokcn. New Jersey, Published simultaneously in Canada, ISBN 978–0–470–22838–8 (cloth).

  22. Lessard-Viger, M., Rioux, M., Rainville, L., & Boudreau, D. (2008). FRET enhancement in core shell nanoparticles. Nanolett, 9(8), 3066–30718.

    Google Scholar 

  23. Luchowski, R., Calander, N., Shtoyko, T., Apicella, E., Borejdo, J., Gryczynski, Z., & Gryczynski, I. (2010). Plasmonic platforms of selfassembled silver nanostructures in application to fluorescence. Journal of Nanophotonics, 4(043516), 1–14.

    Google Scholar 

  24. Boudreau, D., Bracamonte, G, 2019 Ultraluminescent sub-wavelength nanoparticles base on metal enhanced fluorescence and enhanced plasmonics, Bitácora digital Journal. Open call, 10º Ed., Faculty of Chem. Sc. (UNC), 6, 10 (2019) 1–32.ISNN: 2344–9144 https://revistas.unc.edu.ar/index.php/Bitacora/issue/view/2180

  25. Grégoire, A., Boudreau, D., et al. (2017). Chapter 28: Metal-Enhanced Fluorescence in Plasmonic Waveguides. In B. Di Bartolo, et al. (Eds.), Nano-Optics: Principles Enabling Basic Research and Applications, NATO Science for Peace and Security Series B: Physics and Biophysics. Dordrecht: Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_28

    Chapter  Google Scholar 

  26. Curry, S. (2002). Beyond expansion: Structural studies on the transport roles of human serum albumin. Vox Sanguinis, 83(Suppl 1), 315–319.

    CAS  PubMed  Google Scholar 

  27. Weber, C., Coester, C., Kreuter, J., & Langer, K. (2000). Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics, 194, 91–102.

    CAS  PubMed  Google Scholar 

  28. Salinas, C., Amé, M., & Bracamonte, A. G. (2020). Tuning silica nanophotonics based on fluorescence resonance energy transfer for targeted non-classical light delivery applications. Journal of Nanophoton, 14(4), 046007.

    CAS  Google Scholar 

  29. Aslan, K., Wu, M., Lakowicz, J. R., & Geddes, C. D. (2007). Fluorescent core−shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. Journal of the American Chemical Society, 129(6), 1524–1525.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Burns, A., Ow, H., & Wiesner, U. (2006). Fluorescent core–shell silica nanoparticles: Towards “Lab on a particle” architectures for nanobiotechnology. Chemical Society Reviews, 35, 1028–1042.

    CAS  PubMed  Google Scholar 

  31. Asselin, J., Viger, M. L., & Boudreau, D. (2014). Hindawi. Advances in Chemistry, 2014, 1–16.

    Google Scholar 

  32. Jensen, T. R., Duval, M. L., Lance Kelly, K., Lazarides, A. A., Schatz, G. C., & Van Duyne, R. P. (1999). Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. The Journal of Physical Chemistry B, 103, 9846–9853.

    CAS  Google Scholar 

  33. Geddes, C. D. (2010). Metal Enhanced Fluorescence. Wiley.

    Google Scholar 

  34. Salinas, C., & Bracamonte, G. (2018). Design of advanced smart ultraluminescent multifunctional nanoplatforms for biophotonics and nanomedicine applications. Frontiers in Drug, Chemistry and Clinical Research, 1(1), 1–8.

    Google Scholar 

  35. Lakowicz, J. R. (2005). Radiative energy engineering 5: Metal enhanced fluorescence and plasmon emission. Analytical Biochemistry, 337, 171–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, J., Fu, Y., Chowdhury, M. H., & Lakowicz, J. R. (2007). Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Letters, 7(7), 2101–2107.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guillermo Bracamonte, A., Brouard, D., Lessard-Viger, M., Boudreau, D., & Veglia, A. V. (2016). Nano-supramolecular complex synthesis: Switch on/off enhanced fluorescence control and molecular release using a simple chemistry reaction. Microchemical Journal, 128, 297–304.

    Google Scholar 

  38. Chen, Y., Munechika, K., & Ginger, D. S. (2007). Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Letters, 7, 690–696.

    CAS  PubMed  Google Scholar 

  39. Guillermo Bracamonte, A. (2022). Microarrays towards nanoarrays and the future next generation of sequencing methodologies (NGS). Sensing and Bio-Sensing Research, Elsevier, 37, 100503.

    Google Scholar 

  40. Viger, M. L., Live, L. S., Therrien, O. D., & Boudreau, D. (2008). Reduction of self-quenching in fluorescent silica-coated silver nanoparticles. Plasmonics, 3, 33–40.

    CAS  Google Scholar 

  41. Veglia, A. V., & Bracamonte, A. G. (2019). β-Cyclodextrin grafted gold nanoparticles with short molecular spacers applied for nanosensors based on plasmonic effects. Microchem Journal, 148, 277–284.

    CAS  Google Scholar 

  42. Su, K.-H., Wei, Q.-H., Zhang, X., Mock, J. J., Smith, D. R., & Schultz, S. (2003). Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters, 3(8), 1087–1090.

    CAS  Google Scholar 

  43. Gomez Palacios, L. R., Salinas, C., Veglia, A. V., Ame, M. V., & Guillermo Bracamonte, A. (2022). Self-assembly dynamics and effect on synthetic nanobio-optical properties by hybrid monocolored silica nanoparticle labeling of Escherichia coli. Journal of Nanophotonics, 16(3), 036005. https://doi.org/10.1117/1.JNP.16.036005

    Article  CAS  Google Scholar 

  44. Gomez, L. R., Palacios, A. V., & Guillermo Bracamonte, A. (2021). Inflow nano-optics from the near-to the far-field detection based on metal-enhanced fluorescence signaling. Microchemical Journal, 169, 106539.

    Google Scholar 

  45. Guillermo Bracamonte, A. (2022). Neurophotonics by controlled signal tracking from chemical structures, and biostructures towards the nanoscale and beyond. Frontiers Drug Chemistry Clinical Research, 5, 1–8.

    Google Scholar 

  46. Salinas, C., & Bracamonte, A. G. (2019). From microfluidics to nanofluidics and signal wave-guiding for nanophotonics, biophotonics resolution and drug delivery. Frontiers in Drug, Chemistry and Clinical Research, 2, 1–6.

    Google Scholar 

  47. Park, J.-H., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2009). Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials, 8, 331–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aslan, K., Gryczynski, I., Malicka, J., Matveeva, E., Lakowicz, J. R., & Geddes, C. D. (2005). Metal enhanced fluorescence: An emerging tool for biotechnologicla applications. Current Opinion in Biotechnology, 16, 55–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gontero, D., Veglia, A. V., & Bracamonte, A. G. (2020). In Flow metal enhanced fluorescence for biolabelling and biodetection. Photochemical & Photobiological Sciences, RSC-Springer Nature, 19, 1168–1188.

    CAS  Google Scholar 

  50. Gomez Palacios, L. R., & Bracamonte, A. G. (2022). Development of nano- microdevices for the next generation of biotechnology, wearables and miniaturized instrumentation. RSC Advance, 12, 12806–12822.

    CAS  Google Scholar 

  51. Palecek, D., Edlund, P., Westenhoff, S., & Zigmatas, D. (2017). Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center. Science Advances, 3(e1603141), 1–6.

    Google Scholar 

  52. Salinas, C., Valeria Ame, M., & Bracamonte, A. G. (2020). Synthetic non-classical luminescence generation by enhanced silica nanophotonics based on nano-bio-FRET. RSC Advances, 10, 20620–20637.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, P., Zhang, L., Zheng, W., Cong, L., Guo, Z., Xie, Y., Wang, L., Tang, R., Feng, Q., Hamada, Y., Gonda, K., Hu, Z., Wu, X., & Jiang, X. (2018). Thermo­triggered release of CRISPR­Cas9 system by lipid­encapsulated gold nanoparticles for tumor therapy. Angewandte Chemie International Edition, 57, 1491–1496.

    CAS  PubMed  Google Scholar 

  54. Ame, M., & Bracamonte, A. G. (2020). Advances in nano-bio-optics: Detection from virus towards higher sized biostructures. Frontiers Drug Chemistry Clinical Research, 3, 1–7. https://doi.org/10.15761/FDCCR.1000148

    Article  Google Scholar 

  55. Gomez Palacios, L. R., & Guillermo Bracamonte, A. (2022). Generation of Bioimaging towards design of hybrid micro-machines and micro-swimmers. Journal of Chemical Research Advance (JCRA), 3(1), 22–27.

    Google Scholar 

  56. Axelrod, D. (2001). Selective imaging of surface fluorescence with very high aperture microscope objectives. Journal of Biomedial Optics, 6(1), 6–13.

    CAS  Google Scholar 

  57. Barretto, R. P. J., Messerschmidt, B., & Schnitzer, M. J. (2009). In vivo fluorescence imaging with high-resolution microlenses. Nature Methods, 6, 511–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, B., Yu, F., & Zare, R. N. (2007). Surface plasmon resonance imaging using a high numerical aperture microscope objective. Analytical Chemistry, 79(7), 2979–2983.

    CAS  PubMed  Google Scholar 

  59. Guillermo Bracamonte, A. (2023). Current advances in nanotechnology for the future next generation of sequencing (NGS). Biosensors, 13(2), 260.

    Google Scholar 

  60. Golberg, K., Elbaz, A., McNeil, R., Kushmaro, A., Geddes, C. D., & Marks, R. S. (2014). Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence. Nanopart Research, 16(2770), 1–14.

    CAS  Google Scholar 

  61. Brouard, D., Ratelle, O., Bracamonte, A. G., St-Louis, M., & Boudreau, D. (2013). Direct molecular detection of SRY gene from unamplified genomic DNA by metal-enhanced fluorescence and FRET”. Analytical Methods, 5, 6896–6899.

    CAS  Google Scholar 

  62. Gomez Palacios, L. R., Veglia, A., Valeria Ame, M., & Guillermo Bracamonte, A. (2023). Tracking metal enhanced fluorescence from Eschericcia Coli nano-bio-assemblies within colloidal dispersions by static and 3D spectra emissions. Microchemical Journal, 190, 108749.

    CAS  Google Scholar 

  63. Guillermo Bracamonte, A. (2021). Frontiers in Nano- and Micro-device Design for Applied Nanophotonics Biophotonics and Nanomedicine (pp. 1–200). Bentham Science Publishers. https://doi.org/10.2174/97816810885631210101

    Book  Google Scholar 

Download references

Acknowledgements

Special thanks to the Secretary of Science and Technology (SeCyT) of the National University of Cordoba (UNC), Argentina, for the research grant provided. As well especially thanks to Professor Denis Boudreau from COPL at Laval University, Québec, Canada, for the long standing Research Collaboration in progress; as well as to all the Canadian grants that permit it. In addition, it is greatly acknowledged the visit to Professor Jesse Greener Laboratory, in the Département de Chimie forming part of the CQMF (Quebéc Center for Functional Materials) and CERMA (Center for Research on Advanced Materials), at Université Laval, Québec, Canada. Similarly, special thanks are also given to professor Valeria Amé from Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas (Center of Clin. Biochem. and Immunology Research, Dep. of Clinical Biochem., Faculty of Chem. Sci.) UNC, Argentina. Moreover, especial thanks to Professor Daniela Quinteros from Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA) (Unit of Research and Development in Pharmaceutical Technology), at Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas (Dep. of Pharmaceutical Sciences, Faculty of Chemical Sci.), from UNC, and her Research Group. Finally, It is acknowledged to all the related supporters of the recent Entrepreneurship-Start-Up:“Bio-highlighting solutions” leaded in progress by A. G. B. et al., since “Awarded Prix Ideas Challenge 2010”, Entrepreneuriat ULaval–Université Laval, Laval University, Quebec, Canada. (https://www.eul.ulaval.ca/). In similar manner to all collaborators in the Research Group-In-Progress focused on “Design and synthesis of new Optical active Nanostructures with Ultraluminescent applications applied for Photonics materials, Biophotonics, Nano-, Microfluidic systems, and Devices”; in Collaboration with COPL, Ulaval, Canada, and other International partners.

Funding

Secretaria de Ciencia y Tecnología—Universidad Nacional de Córdoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guillermo Bracamonte.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios, L.R.G., Martinez, S.M., Tettamanti, C.S. et al. Bi-coloured enhanced luminescence imaging by targeted switch on/off laser MEF coupling for synthetic biosensing of nanostructured human serum albumin. Photochem Photobiol Sci 22, 2735–2758 (2023). https://doi.org/10.1007/s43630-023-00483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00483-5

Keywords

Navigation