Skip to main content

Advertisement

Log in

Enhancing the bio-prospective of microalgae by different light systems and photoperiods

  • Reviews
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Microalgae are a source of highly valuable bioactive metabolites and a high-potential feedstock for environmentally friendly and sustainable biofuel production. Recent research has shown that microalgae benefit the environment using less water than conventional crops while increasing oxygen production and lowering CO2 emissions. Microalgae are an excellent source of value-added compounds, such as proteins, pigments, lipids, and polysaccharides, as well as a high-potential feedstock for environmentally friendly and sustainable biofuel production. Various factors, such as nutrient concentration, temperature, light, pH, and cultivation method, effect the biomass cultivation and accumulation of high-value-added compounds in microalgae. Among the aforementioned factors, light is a key and essential factor for microalgae growth. Since photoautotrophic microalgae rely on light to absorb energy and transform it into chemical energy, light has a significant impact on algal growth. During micro-algal culture, spectral quality may be tailored to improve biomass composition for use in downstream bio-refineries and boost production. The light regime, which includes changes in intensity and photoperiod, has an impact on the growth and metabolic composition of microalgae. In this review, we investigate the effects of red, blue, and UV light wavelengths, different photoperiod, and different lighting systems on micro-algal growth and their valuable compounds. It also focuses on different micro-algal growth, photosynthesis systems, cultivation methods, and current market shares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhou, X., Yuan, S., Chen, R., & Ochieng, R. M. (2015). Sustainable production of energy from microalgae: Review of culturing systems, economics, and modelling. Journal of Renewable and Sustainable Energy., 7(1), 012701.

    Google Scholar 

  2. Bahadar, A., & Khan, M. B. (2013). Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 27, 128–148.

    CAS  Google Scholar 

  3. Kargupta, W., Ganesh, A., & Mukherji, S. (2015). Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor. Bioresource technology, 180, 370–375.

    CAS  PubMed  Google Scholar 

  4. Sforza, E., Simionato, D., Giacometti, G. M., Bertucco, A., & Morosinotto, T. (2012). Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS ONE, 7(6), 38975.

    Google Scholar 

  5. Levasseur, W., Perré, P., & Pozzobon, V. (2020). A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 41, 107545.

    CAS  PubMed  Google Scholar 

  6. Gris, B., Morosinotto, T., Giacometti, G. M., Bertucco, A., & Sforza, E. (2014). Cultivation of Scenedesmus obliquus in photobioreactors: Effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Applied Biochemistry and Biotechnology, 172(5), 2377–2389.

    CAS  PubMed  Google Scholar 

  7. Wahidin, S., Idris, A., & Shaleh, S. R. M. (2013). The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129, 7–11.

    CAS  PubMed  Google Scholar 

  8. Amini Khoeyi, Z., Seyfabadi, J., & Ramezanpour, Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, 20(1), 41–49.

    CAS  Google Scholar 

  9. Vecchi, V., Barera, S., Bassi, R., & Dall’Osto, L. (2020). Potential and challenges of improving photosynthesis in algae. Plants, 9(1), 67.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar, V., Sharma, N., Jaiswal, K. K., Vlaskin, M. S., Nanda, M., Tripathi, M. K., & Kumar, S. (2021). Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochemistry, 104, 83–91.

    CAS  Google Scholar 

  11. Johnson, M. P. (2017). Correction: Photosynthesis. Essays in Biochemistry, 61(4), 429.

    PubMed  PubMed Central  Google Scholar 

  12. Stirbet, A., Lazár, D., Guo, Y., & Govindjee, G. (2020). Photosynthesis: Basics, history and modelling. Annals of Botany, 126(4), 511–537.

    CAS  PubMed  Google Scholar 

  13. Shevela, D., Bjorn, L. O., & Govindjee. (2019). Photosynthesis: Solar energy for life. World Scientific.

    Google Scholar 

  14. Collini, E. (2019). Carotenoids in photosynthesis: The revenge of the “accessory” pigments. Chem, 5(3), 494–495.

    CAS  Google Scholar 

  15. Paul, V., Sharma, L., Kumar, R., Pandey, R., & Meena, R. C. (2017). Estimation of chlorophylls/photosynthetic pigments—Their stability is an indicator of crop plant tolerance to abiotic stresses. In: Manual of ICAR sponsored training programme for technical staff of ICAR institutes on “physiological techniques to analyze the impact of climate change on crop plants, 8.

  16. Meneghin, E., Volpato, A., Cupellini, L., Bolzonello, L., Jurinovich, S., Mascoli, V., Carbonera, D., Mennucci, B., & Collini, E. (2018). Coherence in carotenoid-to-chlorophyll energy transfer. Nature Communications, 9(1), 1–9.

    CAS  Google Scholar 

  17. Thyrhaug, E., Lincoln, C. N., Branchi, F., Cerullo, G., Perlík, V., Šanda, F., Lokstein, H., & Hauer, J. (2018). Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum. Photosynthesis Research, 135(1), 45–54.

    CAS  PubMed  Google Scholar 

  18. Büchel, C. (2020). Light harvesting complexes in chlorophyll c-containing algae. Biochimica et Biophysica Acta, Bioenergetics, 1861(4), 148027.

    PubMed  Google Scholar 

  19. Daneshvar, E., Ok, Y. S., Tavakoli, S., Sarkar, B., Shaheen, S. M., Hong, H., Luo, Y., Rinklebe, J., Song, H., & Bhatnagar, A. (2021). Insights into upstream processing of microalgae: A review. Bioresource Technology, 329, 124870.

    CAS  PubMed  Google Scholar 

  20. Behera, S., Singh, R., Arora, R., Kumar Sharma, N., Shukla, M., & Kumar, S. (2014). Scope of algae as third generation biofuels. Frontiers in Bioengineering and Biotechnology, 2, 1–13.

    Google Scholar 

  21. Darvehei, P., Bahri, P. A., & Moheimani, N. R. (2018). Model development for the growth of microalgae: A review. Renewable and Sustainable Energy Reviews, 97, 233–258.

    CAS  Google Scholar 

  22. Schüler, L. M., Schulze, P. S. C., Pereira, H., Barreira, L., León, R., & Varela, J. (2017). Trends and strategies to enhance triacylglycerols and high-value compounds in microalgae. Algal Research, 25, 263–273.

    Google Scholar 

  23. Show, P. L., Tang, M. S., Nagarajan, D., Ling, T. C., Ooi, C. W., & Chang, J. S. (2017). A holistic approach to managing microalgae for biofuel applications. International Journal of Molecular Sciences, 18(1), 215.

    PubMed  PubMed Central  Google Scholar 

  24. Borowitzka, M. A., & Moheimani, N. R. (2013). Open pond culture systems. Algae biofuels and energy (pp. 133–152). Springer.

    Google Scholar 

  25. Schoepp, N. G., Stewart, R. L., Sun, V., Quigley, A. J., Mendola, D., Mayfield, S. P., & Burkart, M. D. (2014). System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresource Technology, 166, 273–281.

    CAS  PubMed  Google Scholar 

  26. Kumar, V., Kumar, R., Rawat, D., & Nanda, M. (2018). Synergistic dynamics of light, photoperiod and chemical stimulants influences biomass and lipid productivity in Chlorella singularis (UUIND5) for biodiesel production. Applied Biological Chemistry, 61(1), 7–13.

    CAS  Google Scholar 

  27. Perez-Garcia, O., & Bashan, Y. (2015). Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. Algal biorefineries (pp. 61–131). Springer.

    Google Scholar 

  28. Eltringham, D., & Farag, I. H. (2013). LED technology for energy efficient microalgae growth. Renewable and Sustainable Energy Reviews, 13(8), 2175–2180.

    Google Scholar 

  29. Atta, M., Idris, A., Bukhari, A., & Wahidin, S. (2013). Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technology, 148, 373–378.

    CAS  PubMed  Google Scholar 

  30. Pattanaik, A., Sukla, L. B., & Pradhan, D. (2018). Effect of LED lights on the growth of microalgae. Inglomayor, 14, 17–24.

    Google Scholar 

  31. Baer, S., Heining, M., Schwerna, P., Buchholz, R., & Hübner, H. (2016). Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor. Algal Research, 14, 109–115.

    Google Scholar 

  32. Wang, T., Tian, X., Liu, T., Wang, Z., Guan, W., Guo, M., Chu, J., & Zhuang, Y. (2017). A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochemistry, 60, 74–83.

    CAS  Google Scholar 

  33. Hultberg, M., Jönsson, H. L., Bergstrand, K. J., & Carlsson, A. S. (2014). Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresource Technology, 159, 465–467.

    CAS  PubMed  Google Scholar 

  34. Ra, C. H., Kang, C. H., Jung, J. H., Jeong, G. T., & Kim, S. K. (2016). Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource Technology, 212, 254–261.

    CAS  PubMed  Google Scholar 

  35. Yan, C., Muñoz, R., Zhu, L., & Wang, Y. (2016). The effects of various LED (light emitting diode) lighting strategies on simultaneous biogas upgrading and biogas slurry nutrient reduction by using of microalgae Chlorella sp. Energy, 106, 554–561.

    CAS  Google Scholar 

  36. Xu, Y., & Harvey, P. J. (2019). Carotenoid production by Dunaliella salina under red light. Antioxidants (Basel), 8, 123.

    CAS  PubMed  Google Scholar 

  37. Yuri, T., Shota, K., Senji, T., Shun, T., Shinichi, T., Yutaka, K., Kintake, S., & Tomoko, S. (2020). Light dependent accumulation of β-carotene enhances photo-acclimation of Euglena gracilis. Journal of Photochemistry and Photobiology, B: Biology, 209, 111950.

    Google Scholar 

  38. Pereira, S., & Otero, A. (2020). Haematococcus pluvialis bioprocess optimization: Effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response. Algal Research, 51, 102027.

    Google Scholar 

  39. Li, D., Yuan, Y., Cheng, D., & Zhao, Q. (2019). Effect of light quality on growth rate, carbohydrate accumulation, fatty acid profile and lutein biosynthesis of Chlorella sp. AE10. Bioresource Technology, 291, 121783.

    CAS  PubMed  Google Scholar 

  40. Zittelli, G. C., Mugnai, G., Milia, M., Cicchi, B., Benavides, A. S., Angioni, A., et al. (2022). Effects of blue, orange and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures. Algal Research, 61, 102583.

    Google Scholar 

  41. Ma, R., Zhao, X., Xie, Y., Ho, S. H., & Chen, J. (2019). Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresource Technology, 275, 416–420.

    CAS  PubMed  Google Scholar 

  42. Wu, M., Zhu, R., Lu, J., Lei, A., Zhu, H., Hu, Z., & Wang, J. (2020). Effects of different abiotic stresses on carotenoid and fatty acid metabolism in the green microalga Dunaliella salina Y6. Annales de Microbiologie, 70, 48–57.

    CAS  Google Scholar 

  43. Yang, Y., & Weathers, P. (2015). Red light and carbon dioxide differentially affect growth, lipid production, and quality in the microalga, Ettlia oleoabundans. Applied Microbiology and Biotechnology, 99(1), 489–499.

    CAS  PubMed  Google Scholar 

  44. Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó. S., Palsson, B. Ø., & Brynjólfsson, S. (2013). Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology, 97(6), 2395–2403.

    CAS  PubMed  Google Scholar 

  45. Xu, Y., & Harvey, P. J. (2019). Carotenoid production by Dunaliella salina under red light. Antioxidants, 8(5), 123.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, Y., & Harvey, P. J. (2019). Red light control of beta-carotene isomerisation to 9-cis beta-carotene and carotenoid accumulation in Dunaliella salina. Antioxidants (Basel), 8, 148–161.

    CAS  PubMed  Google Scholar 

  47. Neale, R. E., Barnes, P. W., Robson, T. M., Neale, P. J., Williamson, C. E., Zepp, R. G., Wilson, S. R., Madronich, S., Andrady, A. L., Heikkilä, A. M., & Bernhard, G. H. (2021). Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical & Photobiological Sciences, 20(1), 1–67.

    CAS  Google Scholar 

  48. Romanhole, R. C., Ataide, J. A., Moriel, P., & Mazzola, P. G. (2015). Update on ultraviolet A and B radiation generated by the sun and artificial lamps and their effects on skin. International Journal of Cosmetic Science, 37(4), 366–370.

    CAS  PubMed  Google Scholar 

  49. Kumar, V., Nanda, M., Kumar, S., & Chauhan, P. K. (2018). The effects of ultraviolet radiation on growth, biomass, lipid accumulation and biodiesel properties of microalgae. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(7), 787–793.

    CAS  Google Scholar 

  50. Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E., & Madamwar, D. (2011). Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technology, 102(22), 10163–10172.

    CAS  PubMed  Google Scholar 

  51. Yeesang, C., & Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102(3), 3034–3040.

    CAS  PubMed  Google Scholar 

  52. George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., & Mishra, S. (2014). Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus—A potential strain for bio-fuel production. Bioresource Technology, 171, 367–374.

    CAS  PubMed  Google Scholar 

  53. Khajepour, F., Hosseini, S. A., Ghorbani Nasrabadi, R., & Markou, G. (2015). Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of Nostoc calcicola. Applied Biochemistry and Biotechnology, 176(8), 2279–2289.

    CAS  PubMed  Google Scholar 

  54. Vélez-Landa, L., Hernández-De León, H. R., Pérez-Luna, Y. D. C., Velázquez-Trujillo, S., Moreira-Acosta, J., Berrones-Hernández, R., & Sánchez-Roque, Y. (2021). Influence of light intensity and photoperiod on the photoautotrophic growth and lipid content of the microalgae Verrucodesmus verrucosus in a photobioreactor. Sustainability., 13(12), 6606.

    Google Scholar 

  55. Krzemińska, I., Pawlik-Skowrońska, B., Trzcińska, M., & Tys, J. (2014). Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering, 37(4), 735–741.

    PubMed  Google Scholar 

  56. Chini Zittelli, G., Lauceri, R., Faraloni, C., Silva Benavides, A. M., & Torzillo, G. (2023). Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochemical & Photobiological Sciences, 22, 1733–1789.

    CAS  Google Scholar 

  57. Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing, 48(1), 306–310.

    CAS  Google Scholar 

  58. Teo, C. L., Atta, M., Bukhari, A., Taisir, M., Yusuf, A. M., & Idris, A. (2014). Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource Technology, 162, 38–44.

    CAS  PubMed  Google Scholar 

  59. Oh, S. H., Kwon, M. C., Choi, W. Y., Seo, Y. C., Kim, G. B., Lee, S. Y., & Lee, H. Y. (2010). Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima. Journal of Bioscience and Bioengineering, 110(2), 194–200.

    CAS  PubMed  Google Scholar 

  60. Feng, P., Deng, Z., Fan, L., & Hu, Z. (2012). Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. Journal of Bioscience and Bioengineering, 114(4), 405–410.

    CAS  PubMed  Google Scholar 

  61. Kommareddy, A., Anderson, G. A., & Koc, C. (2013). Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. Israeli J Aquac-Bamidgeh, 65.

  62. Kim, D. G., & Choi, Y. E. (2014). Microalgae cultivation using LED light. Korean Journal of Chemical Engineering, 52(1), 8–16.

    CAS  Google Scholar 

  63. Chen, C. Y., Chen, Y. C., Huang, H. C., Huang, C. C., Lee, W. L., & Chang, J. S. (2013). Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2. Bioresource Technology, 147, 160–167.

    CAS  PubMed  Google Scholar 

  64. Shu, C. H., Tsai, C. C., Liao, W. H., Chen, K. Y., & Huang, H. C. (2012). Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of Chemical Technology & Biotechnology, 87(5), 601–607.

    CAS  Google Scholar 

  65. Fu, W., Gudmundsson, O., Feist, A. M., Herjolfsson, G., Brynjolfsson, S., & Palsson, B. Ø. (2012). Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology, 161(3), 242–249.

    CAS  PubMed  Google Scholar 

  66. Baidya, A., Akter, T., Islam, M. R., Shah, A. A., Hossain, M. A., Salam, M. A., & Paul, S. I. (2021). Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon, 7(12), 08525.

    Google Scholar 

  67. Skjånes, K., Rebours, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33(2), 172–215.

    PubMed  Google Scholar 

  68. Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances, 31(8), 1532–1542.

    CAS  PubMed  Google Scholar 

  69. Kiran, B. R., & Venkata Mohan, S. (2021). Microalgal cell biofactory—Therapeutic, nutraceutical and functional food applications. Plants., 10(5), 836.

    PubMed  PubMed Central  Google Scholar 

  70. Kumar, L., & Bharadvaja, N. (2020). A review on microalgae biofuel and biorefinery: Challenges and way forward. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2020.1836084

    Article  Google Scholar 

  71. Yadav, D. K., Singh, A., Agrawal, V., & Yadav, N. (2021). Algal biomass: A natural resource of high-value biomolecules. Bioprospecting plant biodiversity industrial molecules (pp. 303–334). Wiley.

    Google Scholar 

  72. Mishra, V. K., Bacheti, R. K., & Husen, A. (2011). Medicinal uses of chlorophyll: A critical overview. Chlorophyll: Structure, Function and Medicinal Uses 177–196.

  73. Silva, S. C., Ferreira, I. C. F. R., Dias, M. M., & Filomena Barreiro, M. (2020). Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules, 25, 3406.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is supported by the RUDN University Strategic Academic Leadership Program.

Funding

The authors are thankful for the financial support of the Department of Science and Technology (DST), Government of India, New Delhi, under the Indo-Russian Project No. DST/INT/RUS/RSF/P-60/2021.

Author information

Authors and Affiliations

Authors

Contributions

AP: Data curation; writing—original draft. PB: Data curation; writing—original draft. BB: Data curation, writing-reviewing and editing. MN: Data curation, writing-reviewing and editing. SK: Data curation, writing-reviewing and editing. PG: Conceptualization, supervision. VK: Conceptualization; supervision; MSV: Technical assistance; conceptualization; supervision.

Corresponding author

Correspondence to Vinod Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, A., Bhatnagar, P., Gautam, P. et al. Enhancing the bio-prospective of microalgae by different light systems and photoperiods. Photochem Photobiol Sci 22, 2687–2698 (2023). https://doi.org/10.1007/s43630-023-00471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00471-9

Keywords

Navigation