Skip to main content
Log in

Rationalizing the environment-dependent photophysical behavior of a DNA luminescent probe by classical and non-adiabatic molecular dynamics simulations

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Environment-sensitive fluorescent nucleoside analogs are of utmost importance to investigate the structure of nucleic acids, their intrinsic flexibility, and sequence-specific DNA- and RNA-binding proteins. The latter play indeed a key role in transcription, translation as well as in the regulation of RNA stability, localization and turnover, and many other cellular processes. The sensitivity of the embedded fluorophore to polarity, hydration, and base stacking is clearly dependent on the specific excited-state relaxation mechanism and can be rationalized combining experimental and computational techniques. In this work, we elucidate the mechanisms leading to the population of the triplet state manifold for a versatile nucleobase surrogate, namely the 2-thienyl-3-hydroxychromone in gas phase, owing to non-adiabatic molecular dynamics simulations. Furthermore, we analyze its behavior in the B-DNA environment via classical molecular dynamics simulations, which evidence a rapid extrusion of the adenine facing the 2-thienyl-3-hydroxychromone nucleobase surrogate. Our simulations provide new insights into the dynamics of this family of chromophores, which could give rise to an integrated view and a fine tuning of their photochemistry, and namely the role of excited-state intramolecular proton transfer for the rational design of the next generation of fluorescent nucleoside analogs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available at https://zenodo.org/badge/626745583.svg or upon request to the authors.

References

  1. Sinkeldam, R. W., Greco, N. J., & Tor, Y. (2010). Fluorescent analogs of biomolecular building blocks: Design, properties, and applications. Chemical Reviews, 110, 2579–2619.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Michel, B. Y., Dziuba, D., Benhida, R., Demchenko, A. P., & Burger, A. (2020). Probing of nucleic acid structures, dynamics, and interactions with environment-sensitive fluorescent labels. Frontiers in Chemistry, 8, 112.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dziuba, D., Didier, P., Ciaco, S., Barth, A., Seidel, C. A. M., & Mély, Y. (2021). Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chemical Society Reviews, 50, 7062–7107.

    CAS  PubMed  Google Scholar 

  4. Dziuba, D., Pospisil, P., Matyasovsky, J., Brynda, J., Nachtigallova, D., Rulisek, L., Pohl, R., Hof, M., & Hocek, M. (2016). Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions. Chemical Science, 7, 5775–5785.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Riedl, J., Ménova, P., Pohl, R., Orsag, P., Fojta, M., & Hocek, M. (2012). GFP-like fluorophores as DNA labels for studying DNA-protein interactions. Journal of Organic Chemistry, 77, 8287–8293.

    CAS  PubMed  Google Scholar 

  6. Wilson, D. L., & Kool, E. T. (2018). Fluorescent probes of DNA repair. ACS Chemical Biology, 13, 1721–1733.

    CAS  PubMed  Google Scholar 

  7. Veetil, A. T., Zou, J., Henderson, K. W., Jani, M. S., Shaik, S. M., Sisodia, S. S., Hale, M. E., & Krishnan, Y. (2020). DNA-based fluorescent probes of NOS2 activity in live brains. Proceedings of the National academy of Sciences of the United States of America, 117, 14694–14702.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gebhard, J., Hirsch, L., Schwechheimer, C., & Wagenknecht, H.-A. (2022). Hybridization-sensitive fluorescent probes for DNA and RNA by a modular ”Click” approach. Bioconjugate Chemistry, 33, 1634–1642.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Xie, X., Reznichenko, O., Chaput, L., Martin, P., Teulade-Fichou, M.-P., & Granzhan, A. (2018). Topology-selective, fluorescent ’light-up’ probes for G-quadruplex DNA based on photoinduced electron transfer. Chemistry--A European Journal, 24, 12638–12651.

    CAS  PubMed  Google Scholar 

  10. Specht, A., Bolze, F., Omran, Z., Nicoud, J., & Goeldner, M. (2009). Photochemical tools to study dynamic biological processes. HFSP Journal, 3, 255–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Velde, J. H. M., Oelerich, J., Huang, J., Smit, J. H., Jazi, A. A., Galiani, S., Kolmakov, K., Gouridis, G., Eggeling, C., Herrmann, A., Roelfes, G., & Cordes, T. (2016). A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nature Communications, 7, 10144.

    PubMed  PubMed Central  Google Scholar 

  12. Klymchenko, A. S. (2017). Solvatochromic and fluorogenic dyes as environment-sensitive probes: Design and biological applications. Accounts of Chemical Research, 50, 366–375.

    CAS  PubMed  Google Scholar 

  13. Degtyareva, N. N., Reddish, M. J., Sengupta, B., & Petty, J. T. (2009). Structural studies of a trinucleotide repeat sequence using 2-aminopurine. Biochemistry, 48, 2340–2346.

    CAS  PubMed  Google Scholar 

  14. Le, H.-N., Zilio, C., Barnoin, G., Barthes, N. P., Guigonis, J.-M., Martinet, N., Michel, B. Y., & Burger, A. (2019). Rational design, synthesis, and photophysics of dual-emissive deoxyadenosine analogs. Dyes and Pigments, 170, 107553.

    CAS  Google Scholar 

  15. Dziuba, D., Postupalenko, V. Y., Spadafora, M., Klymchenko, A. S., Guérineau, V., Mély, Y., Benhida, R., & Burger, A. (2012). A universal nucleoside with strong two-band switchable fluorescence and sensitivity to the environment for investigating DNA interactions. Journal of the American Chemical Society, 134, 10209–10213.

    CAS  PubMed  Google Scholar 

  16. Kilin, V., et al. (2017). Dynamics of methylated cytosine flipping by UHRF1. Journal of the American Chemical Society, 139, 2520–2528.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuznetsova, A. A., Kuznetsov, N. A., Vorobjev, Y. N., Barthes, N. P. F., Michel, B. Y., Burger, A., & Fedorova, O. S. (2014). New environment-sensitive multichannel DNA fluorescent label for investigation of the protein-DNA interactions. PLoS ONE, 9, 1–11.

    Google Scholar 

  18. Barthes, N. P. F., Gavvala, K., Dziuba, D., Bonhomme, D., Karpenko, J., Dabert-Gay, A. S., Debayle, D., Demchenko, A. P., Benhida, R., Michel, B. Y., Mély, Y., & Burger, A. (2016). Dual emissive analogue of deoxyuridine as a sensitive hydration-reporting probe for discriminating mismatched from matched DNA and DNA/DNA from DNA/RNA duplexes. Journal of Materials Chemistry C, 4, 3010–3017.

    CAS  Google Scholar 

  19. Lobsiger, S., Sinha, R. K., Trachsel, M., & Leutwyler, S. (2011). Low-lying excited states and nonradiative processes of the adenine analogues 7H- and 9H-2-aminopurine. The Journal of Chemical Physics, 134, 114307.

    PubMed  Google Scholar 

  20. Serrano-Andrés, L., Merchan, M., & Borin, A. C. (2006). A three-state model for the photophysics of adenine. Chemistry--A European Journal, 12, 6559–6571.

    PubMed  Google Scholar 

  21. Serrano-Andrés, L., Merchan, M., & Borin, A. C. (2006). Adenine and 2-aminopurine: Paradigms of modern theoretical photochemistry. Proceedings of the National Academy of Sciences of the United States of America, 103, 8691–8696.

    PubMed  PubMed Central  Google Scholar 

  22. Reichardt, C., Wen, C., Vogt, R. A., & Crespo-Hernandez, C. E. (2013). Role of intersystem crossing in the fluorescence quenching of 2-aminopurine 2’-deoxyriboside in solution. Photochemical & Photobiological Sciences, 12, 1341–1350.

    CAS  Google Scholar 

  23. Rachofsky, E. L., Osman, R., & Ross, J. B. A. (2001). Probing structure and dynamics of DNA with 2-aminopurine: Effects of local environment on fluorescence. Biochemistry, 40, 946–956.

    CAS  PubMed  Google Scholar 

  24. Kuchlyan, J., Martinez-Fernandez, L., Mori, M., Gavvala, K., Ciaco, S., Boudier, C., Richert, L., Didier, P., Tor, Y., Improta, R., & Mély, Y. (2020). What makes thienoguanosine an outstanding fluorescent DNA probe? Journal of the American Chemical Society, 142, 16999–17014.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Neill, M. A., & Barton, J. K. (2002). Effects of strand and directional asymmetry on base–base coupling and charge transfer in double-helical DNA. Proceedings of the National Academy of Sciences of the United States of America, 99, 16543–16550.

    PubMed  PubMed Central  Google Scholar 

  26. O’Neill, M. A., & Barton, J. K. (2004). DNA-mediated charge transport requires conformational motion of the DNA bases: Elimination of charge transport in rigid glasses at 77 K. Journal of the American Chemical Society, 126, 13234–13235.

    PubMed  Google Scholar 

  27. Sougnabé, A., Lissouck, D., Fontaine-Vive, F., Nsangou, M., Mély, Y., Burger, A., & Ken-fack, C. A. (2020). Electronic transitions and ESIPT kinetics of the thienyl-3-hydroxychromone nucleobase surrogate in DNA duplexes: A DFT/MD-TDDFT study. RSC Advances, 10, 7349–7359.

    PubMed  PubMed Central  Google Scholar 

  28. Demchenko, A. P. (2020). Photobleaching of organic fluorophores: Quantitative characterization, mechanisms, protection. Methods and Applications in Fluorescence, 8, 022001.

    CAS  PubMed  Google Scholar 

  29. Millar, D. P. (1996). Fluorescence studies of DNA and RNA structure and dynamics. Current Opinion in Structural Biology, 6, 322–326.

    CAS  PubMed  Google Scholar 

  30. Furse, K. E., & Corcelli, S. A. (2010). Effects of an unnatural base pair replacement on the structure and dynamics of DNA and neighboring water and ions. The Journal of Physical Chemistry B, 114, 9934–9945.

    CAS  PubMed  Google Scholar 

  31. Ranjit, S., & Levitus, M. (2012). Probing the interaction between fluorophores and DNA nucleotides by fluorescence correlation spectroscopy and fluorescence quenching. Photochemistry and Photobiology, 88, 782–791.

    CAS  PubMed  Google Scholar 

  32. Jahnke, K., Grubmuller, H., Igaev, M., & Gopfrich, K. (2021). Choice of fluorophore affects dynamic DNA nanostructures. Nucleic Acids Research, 49, 4186–4195.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Duboué-Dijon, E., Fogarty, A. C., Hynes, J. T., & Laage, D. (2016). Dynamical disorder in the DNA hydration shell. Journal of the American Chemical Society, 138, 7610–7620.

    PubMed  Google Scholar 

  34. Frisch, M. J. et al. Gaussian 16 Revision B.01. 2016; Gaussian Inc. Wallingford CT.

  35. Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3094.

    CAS  PubMed  Google Scholar 

  36. Mai, S.; Richter, M.; Heindl, M.; Menger, M. F. S. J.; Atkins, A.; Ruckenbauer, M.; Plasser, F.; Ibele, L. M.; Kropf, S.; Oppel, M.; Marquetand, P.; Gonzalez, L. SHARC2.1: Surface Hopping Including Arbitrary Couplings a Program Package for Non-Adiabatic Dynamics. sharc-md.org, 2019.

  37. Richter, M., Marquetand, P., Gonzalez-Vazquez, J., Sola, I., & Gonzalez, L. (2011). SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. Journal of Chemical Theory and Computation, 7, 1253–1258.

    CAS  PubMed  Google Scholar 

  38. Mai, S., Marquetand, P., & Gonzalez, L. (2018). Nonadiabatic dynamics: The SHARC approach. WIREs Computational Molecular Science, 8, e1370.

    PubMed  Google Scholar 

  39. Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. (2020). The ORCA quantum chemistry program package. The Journal of Chemical Physics, 152, 224108.

    CAS  PubMed  Google Scholar 

  40. Granucci, G., Persico, M., & Zoccante, A. (2010). Including quantum decoherence in surface hopping. The Journal of Chemical Physics, 133, 134111.

    PubMed  Google Scholar 

  41. Case, D. A.; coworkers, Amber Molecular Dynamics Package. 2020, AMBER 2018, University of California San Francisco.

  42. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926–935.

    CAS  Google Scholar 

  43. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 1157–1174.

    CAS  PubMed  Google Scholar 

  44. Zargarian, L., Ben Imeddourene, A., Gavvala, K., Barthes, N. P. F., Michel, B. Y., Kenfack, C. A., Morellet, N., René, B., Fossé, P., Burger, A., Mély, Y., & Mauffret, O. (2017). Structural and dynamical impact of a universal fluorescent nucleoside analogue inserted into a DNA duplex. The Journal of Physical Chemistry B, 121, 11249–11261.

    CAS  PubMed  Google Scholar 

  45. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD a visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    CAS  PubMed  Google Scholar 

  46. Kenfack, C. A., Klymchemko, A. S., Duportail, G., & Burger, A. (2012). Mély Ab initio Study of the solvent H-bonding effect on ESIPT reaction and electronic transitions of 3-hydroxychromone derivatives. Physical Chemistry Chemical Physics: PCCP, 4, 8910–8918.

    Google Scholar 

  47. Martin, R. L. (2003). Natural transition orbitals. The Journal of Chemical Physics, 118, 4775–4777.

    CAS  Google Scholar 

  48. Cuervo, A., Dans, P. D., Carrascosa, J. L., Orozco, M., Gomila, G., & Fumagalli, L. (2014). Direct measurement of the dielectric polarization properties of DNA. Proceedings of the National academy of Sciences of the United States of America, 111, E3624–E3630.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Losantos, R., Pasc, A., & Monari, A. (2021). Don’t help them to bury the light. The interplay between intersystem crossing and hydrogen transfer in photoexcited curcumin revealed by surface-hopping dynamics. Physical Chemistry Chemical Physics, 23, 24757–24764.

    CAS  PubMed  Google Scholar 

  50. Marazzi, M., Mai, S., Roca-Sanjuan, D., Delcey, M. G., Lindh, R., Gonzalez, L., & Monari, A. (2016). Benzophenone ultrafast triplet population: Revisiting the kinetic model by surface-hopping dynamics. Journal of Physical Chemistry Letters, 7, 622–626.

    CAS  PubMed  Google Scholar 

  51. Bignon, E., Gattuso, H., Morell, C., Dehez, F., Georgakilas, A. G., Monari, A., & Dumont, E. (2016). Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion. Nucleic Acids Research, 44, 8588–8599.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank GENCI and Explor computing centers for computational resources. A.M. thanks ANR and CGI for their financial support of this work through Labex SEAM ANR 11 LABX 086, ANR 11 IDEX 05 02. The support of the IdEx “Université Paris 2019” ANR-18-IDEX-0001 is also acknowledged. ED is grateful for a support from the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Monari or Elise Dumont.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2023_431_MOESM1_ESM.pdf

Supplementary file1 (PDF 810 KB) RESP charges for the M chromophore at the ωB97Xd/6-311+G(d,p) vs. B3LYP/6-31G(d,p) levels of theory. Library file for the non-canonical M and M’ chromophores obtained for the GAFF parameters are available at: https://github.com/elisejdumont/3HC-parametrization. Distribution of the torsion angle of the -OH moiety along the Wigner distribution (100 generated structures). TDDFT benchmark for M in gas phase and with a PCM implicit solvation, with and without one water molecule at the ωB97Xd/6-311+G(d,p)//ωB97Xd/6-311+G(d,p) and M06-2X/6-311+G(d,p)//ωB97Xd/6-311+G(d,p) levels of theory. TDDFT calculations for the uracil-M’ system

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monari, A., Burger, A. & Dumont, E. Rationalizing the environment-dependent photophysical behavior of a DNA luminescent probe by classical and non-adiabatic molecular dynamics simulations. Photochem Photobiol Sci 22, 2081–2092 (2023). https://doi.org/10.1007/s43630-023-00431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00431-3

Navigation